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a b s t r a c t

Growing concerns about reducing fuel consumption and global greenhouse gas (GHG) emissions have
forced the shipping industry to accelerate the development of plug-in hybrid electric propulsion systems
(HEPSs). However, the design optimization of plug-in HEPSs with the single objective of saving fuel may
result in increased GHG emissions. This study proposes a bi-objective optimization by considering not
only fuel consumption but also GHG emissions. The NSGA-II method is developed to explore the Pareto
optimal solution set. A real-time hardware-in-the-loop experimental platform is built to validate the
effectiveness of the optimization. The experimental results show that the optimal design selected from
the Pareto solution set of the bi-objective optimization is closer to the ideal point than the optimal
designs via the single-objective optimization pursuing either minimum fuel consumption or minimum
GHG emissions. Further, sensitivity analysis is conducted. It is found that three variables (motor rotor
diameter, motor rotor length, and gear ratio) are of local optimum at the Pareto front; and two (number
of battery modules and lower bound of the battery state of charge) are of strong sensitivity regarding the
contradiction between fuel consumption and GHG emissions.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Regarding environmental protection, an increasing number of
stringent regulations on fuel consumption and emissions are being
enacted in the shipping industry, such as the energy efficiency
design index (EEDI) [1] and International Convention for the Pre-
vention of Pollution from Ships (MARPOL convention) [2]. Hybrid
electric propulsion systems (HEPSs) are considered as one potential
solution because diesel engines canwork within the high efficiency
region under various working conditions with the aid of electric
machines [3e5]. Moreover, through the use of shore power that is
charged into large capacity batteries, plug-in HEPSs can reduce
further fuel consumption and extend the zero-emission range
when operated in pure electric mode. Recently, the design of plug-
in HEPSs has attracted increasing interest from both industry and
academia [6,7].

In general, larger battery capacity allows more electricity from
the shore power plant to be used, which means less fuel
ghai Jiao Tong University, 800
consumption and less emission on the voyage of plug-in HEPSs.
However, the lifecycle greenhouse gas (GHG) emissions from the
electricity production by coal is higher than that by fossil fuels and
other renewable sources because coal is more carbon-intensive [8].
In countries rich in coal, such as China and India, electricity is
mainly produced by coal [9]. Thus, the overall GHG emissions of the
plug-in HEPS might increase due to the over usage of the shore
power. Therefore, it is necessary to optimize the design of the plug-
in HEPS considering not only fuel consumption but also GHG
emissions.

In most previous studies, design optimization was performed
only with the goal of fuel saving while GHG emissions were not
considered in the objective function. The design of a serial HEPS
was optimized for a medium-size (14m) boat [10]. The fuel con-
sumption of the optimal design is 61.8 L/100 km, compared to
92.6 L/100 km of the conventional design. Two optimal designs,
that can reduce energy consumption by 8%, on average, across four
typical scenarios, were examined for a hybrid steam turbine/elec-
tric motor propulsion system [11]. With the aim to be fuel-saving
and weight-saving, the HEPS size was optimized for a motoryacht
[12]. However, fuel saving does not necessarily mean low GHG
emissions. Specifically, GHG emission reduction, even zero
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emission, is amajor requirement for the usage of HEPSs in some key
environmentally protected areas. Thereafter, it is important to
examine a bi-objective optimization design to achieve a compro-
mise regarding fuel consumption and GHG emissions.

Bi-objective optimization can obtain better designs in terms of
comprehensive performancewhen compared with single-objective
optimization. For example, a plug-in fuel cell hybrid bus reduces
fuel consumption by 12.86% while lowering GHG emissions by
9.36% [13]. An optimization considering HC/CO/NOx emissions and
fuel consumption was applied to a hybrid electric vehicle [14].
However, bi-objective optimization considering fuel consumption
and GHG emissions simultaneously has not been explored for
diesel-electric hybrid vehicles and HEPS ships. In addition, there are
significant differences between the hybrid vehicles and HEPS ships.
First, long range and durable endurance is essential for HEPS ships,
whereas hybrid vehicles can be refilled, recharged, or repaired
conveniently. Second, a much larger amount of non-propulsive
power is generally required by HEPS ships to drive working de-
vices, such as crane and water treatment, while the auxiliary power
requirement of hybrid vehicles is relatively low. Third, HEPS ships
typically use multiple generator sets or even multiple types of
prime movers that are connected to a common power bus and are
independently controlled. In contrast, hybrid vehicles typically use
a set of power devices. Fourth, unlike hybrid vehicles that are likely
to stop-and-go frequently, HEPS ships typically keeps sailing in one
mode for a long time with a stable power requirement. Finally, it is
inefficient to apply regenerative braking technology due to the lack
of direct adhesion between the propeller and water [15].

Several optimization algorithms have been recently developed
for bi-objective and multi-objective problems in various applica-
tions. Theweighting factor methodwas examined to solve an active
distribution networks planning problem in order to minimize the
total operational cost and total energy loss [16]. The selection of
weighting factors is challenging because different combinations of
weighting factors results in optimal designs which achieve
different performance. Instead of using weighting factors, the Par-
eto optimal solution set provides an effective method to deal with
multi-objective optimization problems. For example, a multi-
objective ant colony optimization (MOACO) algorithm was
designed to solve a path-finding problem for a military unit aiming
to pursuing maximum speed and safety [17]. However, the MOACO
always involves a long period to reach convergence and tends to be
confined to a local optimum solution. A non-dominated sorting
genetic algorithm II (NSGA-II), which is an evolutionary-based
global optimization, has been applied to the absorption heat
pump [18], Stirling heat pump [19], refrigerator [20], irreversible
regenerative closed Brayton cycle [21], multi-step solar-driven
Brayton plant [22], etc. The NSGA-II was compared with another
Fig. 1. Diagram of pro
multi-objective particle swarm optimization algorithm (MOPSO) to
solve a multi-objective multi-route flexible flow line problem [23].
The results indicated that the NSGA-II performs better than MOPSO
in terms of space and quality criteria, though the NSGA-II provides
fewer Pareto solutions. In addition, the NSGA-II was comparedwith
a dominance based multi-objective simulated annealing algorithm
(DBMOSA) in the optimization of network design. The results
showed that the NSGA-II outperforms the DBMOSA in global
searching ability [24]. Therefore, in the present study, the NSGA-II is
chosen to explore the design space.

Considering fuel consumption and GHG emissions, the present
study proposes a bi-objective optimization methodology to deter-
mine the size of the major components of plug-in HEPSs, including
the diesel engines, motors, battery modules, and gearboxes. The
proposed methodology is applied to a 120-ton tug ship equipped
with a set of plug-in HEPS. The Pareto solution sets calculated from
the NSGA-II are compared with the optimal solution from a single
objective algorithm considering fuel consumption and GHG emis-
sions. The performance tests are performed on a hardware-in-the-
loop (HIL) platform. Furthermore, sensitivity analysis is performed
in order to understand and provide insight into the results from
optimization.

The present study is organized as follows. Section 2 builds the
mathematical models of the plug-in HEPS. Section 3 describes the
energy management strategy. Section 4 presents the optimization
algorithm. Section 5 provides the results and discussion, and sec-
tion 6 draws conclusions.
2. Mathematical modeling

The configuration of a plug-in HEPS is compared with that of a
conventional propulsion system, as shown in Fig. 1. In the con-
ventional propulsion system, four diesel engines are used, two
drive two propellers, and two drive two generators. The two pro-
pellers are identical and symmetrically arranged along the longi-
tudinal axis of the ship. The two generators are identical.

However, in the plug-in HEPS, only two diesel engines are used.
They drive two identical generators and produce electricity
distributed by the power bus. Other than the two generators, the
power bus distributes the electricity from two additional sources,
i.e., the battery and the shore power station. Two motors use the
electricity and each drive one of the two propellers. The battery can
store the electricity from the shore power and generators, and help
supply the power required by the propellers, hotel load, and service
load. Thus, the diesel engines are not directly connected to the
propellers, so they canworkwithin high efficiency range in terms of
rotary velocity and output torque regardless of changes in power
demand. Additionally, more electricity from the shore power
pulsion systems.



Fig. 2. Information flow of the mathematical models.
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station allows longer range of zero-emission during the voyage.
To facilitate the optimization algorithm, the plug-in HEPS is

modeled using the inverse simulation method [25]. For a pre-
defined velocity profile, the thrust T of the propeller can be
calculated from themodels of ship dynamics and hydrodynamics as
shown in Fig. 2. Following that, the physical quantities (rotary ve-
locity, torque, power, etc.) of the propellers, motors, generators, and
diesel engines can be calculated by using the mathematical models.
The models illustrated in Fig. 2 are detailed in the following
paragraphs.
2.1. Ship dynamics

The longitudinal dynamics of the ship is given by Refs. [26,27]:

m
dv
dt

¼ npTð1� t1Þ � Rtotal: (1)

wherem is themass of the ship, v is the velocity of the ship, np is the
number of the propellers, T is the effective thrust of one propeller,
t1 is the thrust deduction coefficient, and Rtotal is the total resistance
calculated from hydrodynamics including frictional resistance RF ,
wave-making resistanceRw, air resistance RAir [27,28] as below.

Rtotal ¼ RF þ RW þ RAir: (2)

RF ¼ 1
2
CFrv

2S: (3)

RW ¼ 1
2
CWrv2S: (4)

RAir ¼
1
2
CAirrv

2AT : (5)

where, r is the sea-water density, S is the wet-surface area of hull,
CF is the frictional resistance coefficient, CW is the wave-making
resistance coefficient, Cair is the air resistance coefficient, AT is
the advance facing area in the air.
2.2. Propellers

The two propellers are identical. For each propeller, the effective
thrust T and the effective torque Q are given by Refs. [27,28]:

T ¼ KTn
2D4r: (6)

Q ¼ n2D5rKQ : 7)

KT ¼ fT ðJA; pitch=D;Ae=Ao; Z;RnÞ: (8)
KQ ¼ fQ ðJA;pitch=D;Ae=Ao; Z;RnÞ: (9)

where KT is the thrust coefficient, KQ is the torque coefficients, n is
the angular speed whose units is rpm (revolution per minute), D is
the diameter, Ae and A0 are the expanded blade area and swept area
of the propellers, respectively. The coefficients KT and KQ are the
functions of the advance coefficient JA, pitch ratiopitch=D, expanded
bladeearea ratio Ae=A0, number of propeller blades Z, and Reynolds
number Rn [29]. The definitions of JA and Rn are given as below.

JA ¼ v

nD
: (10)

Rn ¼ 1
y
vD: (11)

where y is the kinematic viscosity.
2.3. Gearboxes

Each propeller requires a gearbox to connect the driving motor.
Therefore, there are two identical gearboxes. Each gearbox is
modeled as below.

uM ¼ 2pi
60

n: (12)

TM e ¼
1

ihgear
Q : (13)

where uM is the angular velocity of the motor, TM e is the output
torque of the motor, i is the gear ratio, and hgear is the efficiency
coefficient.
2.4. Motors

The two drivingmotors are identical. Eachmotor is described by
a scalable model based on the Willans line method [30]. The
Willans line method represents the relationship between the
theoretically available energy and the output energy from energy
converters. It is widely used to build scalable models for motors,
gasoline engines, and diesel engines [31]. To establish the motor
model, the available mean effective pressure pM me is defined as the
mean force acting on the unit area of the rotor surface, and the
break mean effective pressure pM ma expresses the maximumvalue
of pM me if the efficiency of the motor is 100%.

pM me ¼
TM e

2Vrotor
: (14)
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pM ma ¼ PM in

2VrotoruM
: (15)

Vrotor ¼ 1
4
d2MlM: (16)

where TM e and uM are the output torque and angular velocity of
the motor, respectively. The volume of motor rotor Vrotor is calcu-
lated from the diameter dM and length lM of the motor rotor.

The relationship between the available mean effective pressure
pM me and the break mean effective pressure pM ma can be
expressed as [30]:

pM me ¼ �eM2
,p2M ma þ eM 1pM ma � pM loss: (17)

pM loss ¼ eM l2,v
2
r þ eM l0

eM 2 ¼ eM 21vr þ eM 20

eM 1 ¼ eM 12v
2
r þ eM 11vr þ eM 10

vr ¼ 1
2
dMuD

: (18)

where,vr is the average line speed of the motor rotor. The Willans
line coefficients (eM 10; eM 11; eM 12; eM 20; eM 21; eM l0and eM l2)
are inherited by the new designed motor that belongs to the same
class as the baseline motor.

Based on the efficiencymap of a baseline motor, theWillans line
coefficients for motor can be calculated by parameter identification
from equation (17). Changing the diameter dM and length lM of the
motor rotor, equation (17) can be used to represent the relationship
between the available mean effective pressure pM me and the break
mean effective pressure pM ma of a scaled motor, as well as the
relationship between the input power PM in and operational con-
ditions (TM e and uM).
2.5. Generators

The two generators are identical. The output power of each
generator is denoted by PG which is calculated by:

PG ¼ hgenPD: (19)

PG rate ¼ hgenPD rate: (20)

PD ¼ TD e,uD: (21)

where PD is the output power of the diesel engine, hgen is the effi-
ciency of the generator, TD e is effective torque of the diesel engine,
and uD is the angular velocity of the diesel engine. In general, the
rated power PG rate of the generator is chosen to match the rated
power PD rate of the corresponding diesel engine.

Given that the size of the diesel engine is discussed in detail in
the following paragraphs, it is unnecessary to model and further
investigate the size of the generator.
2.6. Diesel engines

A scalable model is established based on the Willans line
method [30e33]. Firstly, the available mean effective pressure
pD ma and break mean effective pressure pD me are defined as
below.
pD me ¼ 4p,
TD e

VD
: (22)

pD ma ¼ LCV,
4p
VD

_mf

uD
: (23)

in which, VD is the diesel engine displacement, LCV is the lower
calorific value of the diesel fuel, and _mf is the mass flow of the diesel
fuel. According to the Willans line method, the two pressures can
be fitted by a polynomial as below [33].

pD me ¼ �eD2
,p2D ma þ eD 1pD ma � pD loss: (24)

pD loss ¼ eD l2,v
2
p þ eD l0

eD 2 ¼ eD 21vp þ eD 20

eD 1 ¼ eD 12v
2
p þ eD 11vp þ eD 10

vp ¼ SD
p
uD

: (25)

VD ¼ 1
4
SDB

2
D: (26)

where vp is the average piston speed, SD and BD are the stroke and
bore of the cylinder, respectivelyeD 10; eD 11; eD 12; eD 20; eD 21;

eD l0, and eD l2 are Willans line factors for diesel engine which are
the same for a class of engine designs with different displacement
VD and stroke SD.

Therefore, given the data of the available mean effective pres-
sure pD ma and break mean effective pressure pD me of a baseline
diesel engine, theWillans line factors can be obtained by parameter
identification from (25). Thereafter, given the effective torque TD e,
the displacement VD and stroke SD of a new diesel engine, the break
mean effective pressure pD me can be calculated from (22).
Following that, the available mean effective pressure pD ma can be
calculated from (24). Finally, the mass flow _mf can be calculated
from (23). eD 10; eD 11; eD 12; eD 20; eD 21; eD l0 ased on these
calculations, the mass flow of a class of diesel engine designs can be
obtained.

2.7. Battery

In this study, lithium-ion batteries are used due to their high
energy density, prominent storage efficiency, and flat characteristic
curve of voltage drop without memory effects [34]. In the battery
system, several battery modules are connected in series. Each
battery module consists of 40 identical battery cells which are
parallelly connected. The number of battery modules, nser , should
be designed. As applied to the analysis of other hybrid powertrains,
the Rint model is used to describe the current I of the battery cell as
below [35e38].

Pbat ¼
PB
nser

: (27)

I ¼ Voc

2Rbat
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Voc

2Rbat

�2

� Pbat
Rbat

s
: (28)

where PB is the power of the battery system, Voc, Rbat , and Pbat are
open-circuit voltage, internal resistance, and terminal power of the
battery cell, respectively.

Disregarding the imbalance of the battery cells, the stage of
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charge of the battery module is the same as that of the battery cell.
The battery state of charge (SOC) is determined from Ref. [35]:

S _OC ¼ �Ihcolm
Qbat

: (29)

where hcolm is Coulombic efficiency, and Qbat is the battery capacity.
3. Energy management strategy

The energy management strategy is used to coordinate the
operation of the diesel engine, motor, and generator, also to coor-
dinate the usage of electricity from the battery and the shore power
plant, aiming to fulfill the power required by the propellers, hotel
load, and service load of the plug-in HEPS. Considering low
computational load and implementation convenience, a rule-based
strategy is developed for the energy management of this study.

First of all, the battery should be charged to SOC0 ¼ 90% by the
shore power plant before the ship starts the voyage. The energy
management strategy prioritizes electricity from the shore because
it generally reduces fuel consumption and is cleaner to local waters
in comparison with energy from the generators produced by on-
board diesel engines. The output power of the battery, denoted by
PB, is determined by the status of the battery and total load power
Preq. Following that, the number of running generators, nG (0, 1 or
2), can be selected. The constraints of the battery are represented by
three parameters, i.e., blower , bupper and PB max, which are the lower
bound of SOC, upper bound of SOC, and maximum output power of
Fig. 3. Rule-based energy m
the battery, respectively. In this study, the SOC bounds, blower and
bupper , are not set to be constant like those in literature [39,40].
Instead, they are tuned by the optimal design discussed in next
section.

In terms of the direction of the electric energy flow, the opera-
tion of the plug-in HEPS can be classified into two modes, battery
charging mode and battery discharging mode. The schematic dia-
gram of the energy management strategy is given in Fig. 3, where
PG rate denotes the rated power of the generator. In the battery
charging mode, the generators supply all the load power and
charge the battery at the same time, until the battery SOC is within
an appropriate range. In battery discharging mode, the generators
and battery supply the load power together.

The rules of the energy management strategy are described in
the following paragraphs.

(1) The plug-in HEPS operates in battery charging mode in three
cases: (a) the battery SOC is below blower; (b) the battery SOC
is between blower and bupper , and the output power of the
generators is greater than the load power; and (c) the battery
SOC reaches bupper , and the output power of the generators is
approximately equal to the load power (this is an extreme
case that the generators work but the battery charge actually
stops). In this mode, each generator operates in the high
efficiency region. The number of running generators, nG, is
selected for a generator output power greater than the total
load power, so the extra power can be used to charge the
battery.
anagement strategy.
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(2) The plug-in HEPS operates in battery discharging mode in
two cases: (a) the battery SOC is higher than bupper , with
maximumbattery output power greater than the load power,
so the generators stop; and (b) the battery SOC is between
blower and bupper , the total load power is greater than the
output power of generators, but it is less than the sum of
maximum battery power and output power of generators.
Thus, each generator can either work in the high efficiency
region or stop, which is beneficial for fuel saving. The num-
ber of the running generators nG is selected so that the total
output power of the generators and the battery can meet the
requirement of the total load power.

(3) After every voyage, the battery is charged to an initial
amount (SOC0) via the shore power plant.
4. Multi-objective optimization

4.1. Optimization variables

Considering how the design of the diesel engine, motor,
gearbox, and battery affects the performance of plug-in HEPSs,
seven design variables are introduced. Among them, five are of
component geometry, i.e., the diesel engine displacement VD, mo-
tor rotor diameter dM, motor rotor length lM , gear ratio i, and
number of the battery modules nser . Two are constraints related to
the energy management strategy, i.e., the SOC lower bound blower
and upper bound bupper . The vector of design variables is expressed
as follows.

x ¼ �
VD;DM; lM; i;nser;blower; bupper

�T
: (30)

4.2. Objective function

In this study, two indexes are used to assess the performance of
plug-in HEPSs, namely, the fuel consumption and GHG emissions.
They are represented by f1ðxÞ and f2ðxÞ, respectively. Since it is
required to minimize the two indexes simultaneously, the mathe-
matical expression of the objective can be described as below.

minff1ðxÞ; f2ðxÞg: (31)

4.2.1. Fuel consumption f1ðxÞ
The annual fuel consumption mf year of the plug-in HEPS is

expressed as:

f1ðxÞ ¼ mf year ¼
ð

_mf dt: (32)

4.2.2. GHG emissions f2ðxÞ
The GHG emissions account for the emissions from consumed

diesel fuel and electricity from the shore power supplier. The total
annual GHG emissions, denoted by GHGyear, is calculated as below.

f2ðxÞ ¼ GHGyear ¼ Ef yearGfuel þ Ee yearGele: (33)

Ef year ¼
mf yearLCV
FkWh J

: (34)
where Ef year and Ee year denote the annually consumed energy
from diesel fuel and from the shore power supplier (unit: kWh),
respectively; Gfuel and Gele are the lifecycle GHG emission co-
efficients of diesel fuel and shore supplied electricity (unit: kg/
kWh), respectively; LCV is the lower calorific value of diesel fuel
(unit: J/kg); and FkWh J is the conversion factor from kWh to J.

In China, 75% of the electricity is produced by thermal power
plants, which have an average coal consumption of
0:33 kg=kWh[41]. Therefore, the value of Gele can reach
0:86 kg=kWh[42]. The GHG emissions of the diesel fuel account for
two processes, i.e., the Well-to-Tank (WTT) process and the Tank-
to-Propeller (TTP) process. During the WTT process, the GHG
emissions originate from crude extraction, crude transport, fuel
refining, fuel distribution, fuel dispensing, etc. During the TTP
process, the GHG derive from the engine combustion. Therefore,
the lifecycle GHG emission coefficient Gfuel can be calculated by
Ref. [13].

Gfuel ¼ Gfuel�WTTFkWh J þ
Gfuel TTPFkWh J

LCV
: (35)

where Gfuel WTT is the GHG emission coefficient during the WTT
process (unit: kg/J), Gfuel TTP is the GHG emission coefficient during
the TTP process (dimensionless quantity). By given Gfuel WTT

¼ 1.42� 10�8 kg/J, Gfuel TTP ¼ 3.17, LCV ¼ 4.27� 107 J/kg, and FkWh J

¼ 3.60� 106, the lifecycle GHG emission coefficient of diesel fuel
Gfuel can be calculated as 0:32 kg=kWh[43].

4.3. Constraints

The objective functions, defined in the previous section and
which should be minimized, are subject to several technical con-
straints. In the following, the constraints of the surveyed problems
are expressed.

4.3.1. Power balance constraint
The power generation and battery dispatch should meet the

power demand including propulsive load, hotel load, and service
load.

nGPG þ PB ¼ Preq: (36)

Preq ¼ PM in þ Phot þ Pser: (37)

where Phot and Pser denote hotel load and service load, respectively.

4.3.2. Generator set constraint
The rated power of the two generator sets should be greater

than the maximum required power.

2PG rate > sup
t
Preq: (38)

In addition, the time interval of adjacent start/stop operations of
each generator set should be greater than a minimum time limi-
tation tmin.

tkþ1;i � tk;i � tmin;ci ¼ 1;2: (39)

where tk;i is the time of the ith start/stop operation of the generator
set.

4.3.3. Battery constraint
The number of battery modules must be lower than the

maximum limit (nser max) to make sure the battery can be arranged



Fig. 4. Flow chart of the optimal process based on NSGA-II.
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in a small cabin.

nser � nsermax: (40)

The allowed range of SOC is determined by considering the
stable open-circuit voltage and safety of the batteries [5].

10% � SOC � 95%: (41)

4.3.4. Ship speed constraint
The required sailing speed vreq should be lower than the

maximum speed limitation vmax.

vreq � vmax: (42)

4.4. Optimization algorithm

NSGA-II, a kind of fast and elitist algorithm evolved from
traditional genetic algorithm (GA), is one of the most efficient and
widely used multi-objective evolutionary algorithms. This algo-
rithm employs two procedures named fast non-dominated sorting
and density estimation to comprehensively evaluate solutions on
multiple objectives [44]. The fast, non-dominated sorting proced-
ure is responsible to sort individuals based on the domination
count. The density estimation procedure calculates the average
distance between one solution and its nearest neighbor on either
side of this point along each objectives [44]. If two individuals have
the same domination count, the algorithm prefers the one with
lesser crowding distance.

As described in Fig. 4, the algorithm starts with the random
generation of initial parent population P0 of size N, which is used to
create initial offspring population Q0 of size N by the genetic
operator of crossover and mutation [45]. Next, P0 and Q0 are united
as one combined population R0 ¼ P0∪Q0. Then the algorithm ap-
plies fast non-dominated sorting and density estimation to eval-
uate the multi-objective fitness of every individual in R0. After that,
members of the first several domination count sets are chosen for
the new population P1 successively, until no more sets can be
accommodated [44]. The redundant individuals in the last non-
dominated set are eliminated through comparison of crowding
distance. The new population P1 is subsequently used to create a
new offspring population Q1, as done earlier. The process is
repeatedly performed until the number n of iterations reach the
maximum limit nend.

5. Results and discussion

In this section, the operating cycle of a tug ship is defined
considering both propulsive load and non-propulsive load.
Following that, the Pareto solution set calculated for the bi-
objective optimization is illustrated. Optimal designs can be
selected from the solution set. In addition, the results from single-
objective optimizations, for minimum fuel consumption and min-
imum GHG emissions, are provided for comparison.

In order to evaluate the performance of the optimal designs, a
real-time hardware-in-the-loop experimental platform was estab-
lished. Then, performance tests were carried out on the platform.
The results from the bi-objective optimization are compared with
those from the two single-objective optimizations, and with those
from the conventional benchmark vessel.

Furthermore, a sensitivity analysis was conducted to explore the
scattered distribution of the design variables and the effects of
variations on the solutions of the Pareto front.
5.1. Operating cycle

Due to the absence of a standardized driving cycle, a speed
profile of a tug ship based on actual operational data is used in this
study [46]. As shown in Fig. 5, the ship sails in two operation
modes, namely the transit mode and loading mode. In the transit
mode, the AHT sails at a speed above 5.14m/s (10 kn) to arrive at
work sites, and the auxiliary load only contains the hotel load
which is about 60 kWas shown in the dark green area in Fig. 5(b). In
the loadingmode, the AHT is operated at low speed so as to execute
lifting or pulling. Therefore, the service load includes the power
required by working devices such as a crane, capstan, and bow
thrusters. In this study, the operating cycle is run by the proposed
AHT 6 times a day and 250 days per year. The battery of plug-in
HEPS is recharged from shore power through a ship/shore con-
necting cable after each operating cycle.



Fig. 5. Speed and auxiliary load profile of the AHT [46].
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5.2. Optimization results

The parameters used in the optimization are given in Table A. 1.
The ranges of the optimization variables are given in Table A. 2. The
Pareto solution set of the proposed bi-objective optimization is
illustrated in Fig. 6. Design X and Yare extreme solutions. They gain
the minimum fuel consumption and minimum GHG emissions,
respectively. The ideal point, located at the intersection point of the
minimum fuel consumption and minimum GHG emissions, is
impossible to achieve. Therefore, Design M is selected as the
optimal design of the present study because it is relative closer to
the ideal point. As seen from the fitting curve of the Pareto solu-
tions, the GHG emissions decrease as the fuel consumption in-
creases. In other words, the two performance indices contradict
each other. More usage of diesel fuel means less usage of electricity.
As mentioned in the subsection on GHG emission modeling, the
lifecycle GHG emission coefficient of electricity is two times more
than that of diesel fuel. Thus, the reduction of electricity usage can
reduce the total GHG emissions considering both the diesel fuel and
electricity.

In Fig. 6, Design F is the solution of the single-objective opti-
mization via the classical genetic algorithm aiming to achieve the
minimum fuel consumption. It can be observed that the location of
Design F almost coincides with that of Design X. Similarly, the
location of Design G, which the solution of the single-objective
optimization aiming to achieve the minimum GHG emissions,
almost coincides with that of Design Y. Other than the optimal
designs calculated from the single-objective optimization, the
Pareto solution set contains many comprehensive optimal designs
regarding both the fuel consumption and GHG emissions.

The optimization variables of DesignM, F, and G are compared in
Fig. 6. Comparison of optimization results.
Table A. 3. The major difference among the three optimal designs is
the number of the battery modules nser . Design F uses the
maximum battery modules (244), which means that the most
electricity and the least diesel fuel are consumed. Because the
lifecycle GHG emission coefficient of electricity is much higher than
that of diesel fuel, the most electricity also means the most GHG
emissions. Therefore, Design F gains the minimum fuel consump-
tion, but produces the maximum GHG emissions as shown in Fig. 6.
By contrast, Design G uses the minimum battery modules (nser ¼
103), with minimum GHG emissions, but has the maximum fuel
consumption. The number of battery modules of Design M is be-
tween that of Design F and G. Thereafter, Design M achieves the
comprehensive optimal performance because its fuel consumption
is less than Design G and GHG emissions are less than Design F.
5.3. Discussion

The GHG emissions are dependent on the lifecycle GHG emis-
sion coefficient (Gele) of shore supplied electricity. Different gen-
eration methods of shore power have different Gele. If the source of
the shore power is clean enough, i.e., Gele is small enough, then less
fuel consumption of the plug-in HEPS can produce less GHG
emissions. In other word, the contradiction between fuel con-
sumption and GHG emissions can be resolved. In this regard, there
exists an optimal solution which can reach minimum fuel con-
sumption and minimum GHG emissions simultaneously.

In order to verify the dependence of the optimization objectives
on Gele, the optimization results from Gele ¼ 0:86kg=kWh, consid-
ering the shore power comes from coal, are compared with the
results from other two smaller values of Gele. As shown in Fig. 7, the
Fig. 7. Optimization results from different GHG emission coefficients.
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Pareto solutions for Gele ¼ 0:69kg=kWh evidently lead to lower
GHG emissions compared with those for Gele ¼ 0:86kg=kWh. The
slopes of the fitting curves of the two Pareto solution sets are both
negative, which indicates the contradiction between fuel con-
sumption and GHG emissions. However, the slope of the fitting
curve of Gele ¼ 0:69kg=kWh is much flatter than that of
Gele ¼ 0:86kg=kWh. Therefore, less GHG emissions are produced
for Gele ¼ 0:69kg=kWhwhen less fuel is consumed.

When Gele ¼ 0:52kg=kWh, the optimal solutions converge to
Design D. That is to say, no other solution can be superior to Design
D in either fuel consumption or GHG emissions. The optimization
variables of Design D are given in Table A. 3. Compared with Design
M, Design D has smaller engine and wider range of SOC. Therefore,
Design D is allowed to use more electricity from the shore power
and consume less fossil fuel. The GHG emissions from the increased
electricity are low because of the small Gele. Consequently, Design D
can provide the minimum fuel consumption and minimum GHG
emissions. These results are in accordancewith the aforementioned
hypothesis, which verifies the accuracy of the models and algo-
rithm in this study.
5.4. Hardware-in-the-loop experiment

A hardware-in-the-loop (HIL) experiment is performed to verify
the results of the optimization. The HIL experimental platform, as
shown in Fig. 8, is established including a real-time plug-in HEPS
model platform and a real-time energy management platform. The
software and hardware of the HIL platform can be developed via
Fig. 8. Schematic diagram of the
MATLAB toolboxes for online calibration and C language rapid
generation.

The development process of the HIL experiment platform con-
sists of three steps. Firstly, the driveline models and energy man-
agement strategy are built in the MATLAB environment. Secondly,
the real-time kernel of the driveline models is generated by MAT-
LAB/Simulink automatic code generation technology, as well as the
real-time kernel of the energy management strategy. Thirdly, the
dSPACE software tool, named ControlDesk, downloads the real-
time kernel of the driveline models into the dSPACE hardware
PX10 which has strong real-time computing capacity. In addition,
the kernel of the energy management strategy is downloaded into
the MicroAutobox which is an electronic control hardware. The
variables in the PX10 and the MicroAutobox can be monitored and
calibrated through ControlDesk running on a desktop.

The CAN and I/O interfaces are used for the communication
between the PX10 and theMicroAutobox. The communicationwith
the ControlDesk is through a ethernet interface.

The driveline of a conventional tug ship is taken as the bench-
mark for the studied plug-in HEPS. The parameters of the tug ship
are listed in Table A. 4. The output power of the generator sets is
controlled by a proportional-integral-derivative (PID) controller
that tracks the power command [5]. In order to reduce fuel con-
sumption, the second generator set does not work until the pre-
vious generator set cannot provide sufficient load power. The
results from the conventional propulsive system are represented by
“Conv.” in Figs. 9 and 10. Regarding the optimal design of the plug-
in HEPS, in addition to the Design M selected from the Pareto
HIL experimental platform.



Fig. 9. Annual fuel consumption.

Fig. 10. Annual GHG emissions.
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solution set of the proposed bi-objective optimization, Design F and
G, which respectively pursue fuel consumption and GHG emissions
by the single-objective optimization, were also implemented for
comparison. The performance of Design M, F, G, and the conven-
tional propulsive system are compared in terms of fuel consump-
tion and GHG emissions.

As shown in Fig. 9, the fuel consumption of Design M, F, G, and
the conventional propulsion system is 3:88� 105 kg, 3:20� 105 kg,
6:25� 105 kg, and 6:72� 105 kg, respectively. Hence, all of the
three plug-in HEPSs achieve less fuel consumption than the con-
ventional propulsion system. Specifically, Design M, F, and G can
reduce fuel consumption by 42.26%, 52.38%, and 6.99%, respec-
tively. When compared with Design F, which aimed at minimum
fuel consumption, Design M increases fuel consumption by 20.6%.
When compared with Design G, which aimed at minimum GHG
emissions, Design M decreases fuel consumption by 37.9%.

As shown in Fig. 10, GHG emissions from Design M, F, G, and the
conventional propulsion system are 2:47� 106 kg, 2:59� 106 kg,
2:35� 106kg, and 2:49� 106 kg, respectively. Compared with the
conventional propulsion system, Design M and G reduce the GHG
emissions by 0.91% and 5.64%, respectively, while Design F in-
creases GHG emissions by 3.71%. When compared with Design F,
Design M decreases GHG emissions by 4.6%. When compared with
Design G, which aimed at minimum GHG emissions, Design M in-
creases GHG emissions by 5.1%.

Overall, Design M is better than Design F in terms of GHG
emissions, and it is better than Design G (only pursing minimum
GHG emissions) in terms of fuel consumption. Therefore, Design M
is closer to the ideal point than Design F and G as shown in Fig. 6.

According to the energymanagement strategy, one or two diesel
generators can either be shut down or work with high efficiency at
most of the working time, owing to the usage of large capacity
batteries. Therefore, fuel consumption can be reduced by using
fewer diesel engines. The working schedules of the diesel engines
are provided in Fig. 11 for the four designs. One or two diesel en-
gines of the plug-in HEPS can stop working or consume no fuel for
some time during the operating cycle. In contrast, at least one diesel
engine of the conventional propulsion system stays working all the
time. Further, the accumulated working time per day of the diesel
engines in Design M, F, and G is 13680s, 10800s, and 22320s,
respectively, compared to 39240s in the conventional propulsion
system. It can be observed that the working time of the diesel en-
gines correspond to the fuel consumption as shown in Fig. 9.

Although large amounts of electricity allow significant fuel
saving, GHG emissions may increase due to the large GHG intensity
of the electricity from the shore power plant. Design F is the
extreme example. As seen from Fig. 12, Design F consumes the
maximum electricity (1:69� 106 kWh) from the shore power plant.
Accordingly, Design F produces the maximum GHGs as seen in
Fig. 10, despite the minimum fuel consumption as seen in Fig. 9.
Comparedwith Design F, DesignM consumes less electricity (1:24�
106 kWh), therefore, produces less GHG emissions. Nevertheless, it
consumes more diesel fuel. As a whole, Design M is a trade-off
optimal solution with relatively lower fuel consumption and GHG
emissions.
5.5. Sensitivity analysis

First, the scattered distribution of the seven optimization vari-
ables along with the population in the Pareto frontier are provided
in Fig. 13 in order to determine the most sensible variables which
are useful for further study. Three of the seven variables, i.e., motor
rotor diameter dM, motor rotor length lM , and gear ratio i, remain
almost unchanged as shown in Fig. 13(b), (c), and (d). This indicates
that the three variables do not significantly lead to contradiction
between the two objective indices. Among the other four, the diesel
engine displacement VD, shown in Fig. 13(a), is special because it is
always close to one of the two values, i.e., 70� 10�3m3 and 81�
10�3m3. In contrast, the remaining variables, i.e., number of battery
modules nser , lower bound of SOC blower , and upper bound of SOC
bupper , are scattered within the allowable range as shown in
Fig. 13(eeg). Thus, these three variables do not converge regarding
the two performance indices. This indicates that the variable either
leads to significant contradiction between the two indices or has no
influence on them. The details are revealed in the following para-
graphs by calculating the effects of the variable variations.

Second, the effects of variations of the seven optimization var-
iables on the performance of the Pareto solutions are investigated.
In addition to validate the proposed bi-objective optimization, for a
meaningful investigation, it is important to predict the perfor-
mance even if the optimal design cannot be accurately realized due
to complex engineering issues such asmaterials andmanufacturing
obstacles. Three designs are selected from the Pareto front, Design
M, X, and Y (see Fig. 6). Each optimization variable ranges from
small to large values within the allowable range defined in Table A.
2. The performance is evaluated regarding the two indices, fuel
consumption and GHG emissions, as shown in Fig. 13, in which the
arrows indicate the performance change trend as the optimization
variable changes from small to large.

The variation of the diesel engine displacement VD affects the
performance of Design M, X, and Y in different ways, as seen in
Fig. 14(a). No point other than DesignM, X, and Y can achieve better
performance regarding the two indices. These results validate the
accuracy of the bi-objective optimization proposed in this study.
Specifically, as VD decreases, Design M and X present lower fuel
consumptionwith almost unchanged GHG emissions. Design Yalso



Fig. 11. Working schedule of the generator sets.

Fig. 12. Annual shore power consumption.
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presents lower fuel consumption but higher GHG emissions. As VD
increases, Design M leads to higher fuel consumption with slightly
higher GHG emissions. However, Design X presents higher fuel
consumptionwith almost unchanged GHG emissions, and Design Y
leads to lower fuel consumption but higher GHG emissions.

The effects of variations on motor rotor diameter dM are illus-
trated in Fig. 14(b). The change trends of Design M, X, and Y are
similar. As dM decreases, the three optimal designs lead to higher
fuel consumption and GHG emissions. As dM increases, they pre-
sent a significantly higher fuel consumption and GHG emissions.
Therefore, Design M, X, and Y are actually local optimal in their
neighborhoods. A similar trend regarding variations on motor rotor
length lM and gear ratio i can be observed in Fig. 14(c) and (d).

The effects of variations on the number of battery modules nser
are illustrated in Fig. 14(e). The change trends of Design M, X, and Y
are similar. As nser increases, the three optimal designs lead to
lower fuel consumption but higher GHG emissions. As nser de-
creases, they present higher fuel consumption but lower GHG
emissions. Therefore, no point can be dominant over the others.
Intuitively, this change trend is in line with the Pareto front. The
comparison between the variation designs and the Pareto front
around Design M is plotted in the zoom-in figure at the top right
corner of Fig. 14(e). Their change trend is the same, but there are
solutions in the Pareto front which are better than the variation
designs, regarding both performance indices. The explanation for
the change trend is that more battery modules allows more elec-
tricity usage, and consequently, less fuel consumption. Conse-
quently, GHG emissions become higher because the lifecycle GHG
emission coefficient of electricity produced by coal is two times
more than that of diesel fuel.

The effects of variations on the lower bound of the battery SOC
blower are illustrated in Fig. 14(f). The change trends of Design M, X,
and Y are contrary to those of the number of battery modules in
Fig. 14(e). As blower increases, the three optimal designs present
higher fuel consumption but lower GHG emissions. As blower gets
smaller, they lead to lower fuel consumption but higher GHG
emissions. Therefore, no point can be dominant over the others.
The comparison between the variation designs and the Pareto front
around Design M is plotted in the zoom-in figure at the top right
corner of Fig. 14(f). Their change trend is the same, but there are
solutions in the Pareto front which are better than the variation
designs regarding both performance indices. The explanation for
the change trend is that lower blower allows higher electricity usage,
and consequently, lower fuel consumption and higher GHG emis-
sions. On the other hand, variations on the upper bound of battery
SOC bupper present no observable effect on the performance of the
three optimal designs as shown in Fig. 14(g). The upper bound
bupper of Design M, X, and Y are 82.92%, 83.34%, and 80.03%,
respectively. Thus, the difference between them is not significant.
Overall, the battery SOC barely reaches the boundary during the
voyage due to the large battery capacity provided by increased use
of battery modules. Therefore, the performance is not sensitive to
variations on the upper bound bupper .



Fig. 13. Scattered distribution of optimization variables with population in Pareto front.
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6. Conclusion

A bi-objective optimization was proposed for the design of a
plug-in HEPS, considering not only fuel consumption but also GHG
emissions. The NSGA-II method was used to explore the Pareto
optimal solution set. A real-time HIL experimental platform was
built to validate the effectiveness of the optimization. The experi-
mental results showed that the optimal design selected from the
Pareto solution set of the bi-objective optimization can achieve
37.9% lower fuel consumption than the single-objective optimiza-
tionwhich pursues only GHG emissions. At the same time, 4.6% less
GHG are emitted in comparison with the single-objective optimi-
zation which pursues only fuel consumption. Moreover, compared
with the conventional propulsion system, the NSGA-II has advan-
tages in both aspects, i.e., 42.26% lower fuel consumption and 0.91%
lower GHG emissions. Further, according to a sensitivity analysis
regarding variations of the seven optimization variables, three
variables (motor rotor diameter, motor rotor length, and gear ratio)



Fig. 14. Effects of variations of the seven optimization variables.
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Table A. 3
Comparison among the four optimal designs.

Optimization variable Design M Design F Design G Design D

VDð10�3m3Þ 81.26 81.26 83.16 80.50

dMðmÞ 0.56 0.51 0.67 0.57
lMðmÞ 0.32 0.54 0.30 0.32
i 15.93 17.94 16.12 9.21
nser 220 244 103 244
blowerð%Þ 28.22 13.56 29.81 13.32
bupperð%Þ 82.92 87.74 88.52 86.55
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are of local optimum at the Pareto front; and two (number of bat-
tery modules and lower bound of the battery SOC) are of strong
sensitivity regarding the contradiction between fuel consumption
and GHG emissions. This study is of great significance in areas
where electricity is mainly produced from coal and GHG emission
reduction is difficult because the lifecycle GHG emission coefficient
of the shore supplied electricity is more than two times that of the
diesel fuel. The proposed bi-objective method can be applied to the
design of various HEPSs, such as offshore vessels, research, and
exploration vessels.
Table A. 4
Specification of a 120 ton bollard pull AHT [50].

Parameter Value

Length (oa) 66.00m
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Appendix
Table A. 1
Values of parameters used in the simulation [4,11,26,28,43,47e49].

Parameter Nomenclature Value

Ae=Ao expanded bladeearea ratio 0.5445
AT advance facing area in the air 128.60m2

CAir air resistance coefficient 0.8
CF frictional resistance coefficient 2.2700� 10�3

CW wave-making resistance coefficient 2.7500� 10�3

FkWh J conversion factor from kWh to J 3.60� 106

Gfuel TTP GHG emission coefficient during the TTP process 3.17
Gfuel WTT GHG emission coefficient during the WTT process 1.42� 10�8 kg/J
Gele lifecycle GHG emission coefficient of shore supplied

electricity
0.86 kg/kWh

LCV lower calorific value of diesel fuel 4.27� 107 J/kg
Qbat battery capacity 41 Ah
S wet-surface area of hull 1347.12m2

SOC0 initial state of charge of the battery 90%
Z number of the propeller blades 4
m ship mass 1.7000� 106 kg
nend maximum number of iterations 300
np number of the propellers 2
nser max maximum number of the battery modules 250
pitch=D pitch ratio 0.702
t1 thrust deduction coefficient 0.1000
tmin minimum duration of the generator start/stop

operation
60 s

vreq maximum speed limitation 7.72m/s (15
kn)

hgear efficiency coefficient of the gearbox 0.98
hgen efficiency coefficient of the generator 0.97
r sea-water density 1.025� 103 kg/

m3

y kinematic viscosity of sea water 1.1883� 106

m2s�1

Table A. 2
Range of the optimization variables

Optimization variable Lower bound Upper bound

displacement of the diesel engine VDð10�3 m3Þ 70 140

diameter of the motor rotor dMðmÞ 0.30 0.75
length of the motor rotor lMðmÞ 0.25 0.95
gear ratio i 8.00 20.00
number of the battery modules nser 50 250
SOC lower bound blowerð%Þ 10 30
SOC upper bound bupperð%Þ 70 90

Draught 6.20m
Rated power of the propulsive engines 2� 3285 kW
Rated power of the generators 2� 720 kW
Gear ratio 800:141
References

[1] Zhu Y, Zhou S, Feng Y, Hu Z, Yuan L. Influences of solar energy on the energy
efficiency design index for new building ships. Int J Hydrogen Energy
2017;42:19389e94.

[2] Mccarthy JH. On the calculation of thrust and torque fluctuations of propellers
in nonuniform wake flow. Sensor Actuator B Chem 1961;161(1):80e7.

[3] Díaz-De-Baldasano MC, Mateos FJ, Nú~nez-Rivas LR, Leo TJ. Conceptual design
of offshore platform supply vessel based on hybrid diesel generator-fuel cell
power plant. Appl Energy 2014;116(3):91e100.

[4] Baldi F, Ahlgren F, Melino F, Gabrielii C, Andersson K. Optimal load allocation
of complex ship power plants. Energy Convers Manag 2016;124:344e56.

[5] Ovrum E, Bergh TF. Modelling lithium-ion battery hybrid ship crane operation.
Appl Energy 2015;152:162e72.

[6] Guidi G, Suul JA, Jenset F, Sorfonn I. Wireless charging for ships: high-power
inductive charging for battery electric and plug-in hybrid vessels. IEEE Elec-
trification Magazine 2017;5(3):22e32.

[7] Takamasa T, Oode T, Kifune H, Shimizu E. Quick charging plug-in electric boat
“RAICHO-I”. In: IEEE electric ship technologies symposium, alexandria, USA;
2011.

[8] Zhou G, Ou X, Zhang X. Development of electric vehicles use in China: a study
from the perspective of life-cycle energy consumption and greenhouse gas
emissions. Energy Policy 2013;59(3):875e84.

[9] Shin J, Lee JH, Realff MJ. Operational planning and optimal sizing of microgrid
considering multi-scale wind uncertainty. Appl Energy 2017;195:617e33.

[10] Soleymani M, Yoosofi A, Kandi -DM. Sizing and energy management of a
medium hybrid electric boat. J Mar Sci Technol 2015;20(4):739e51.

[11] Skinner BA, Parks GT, Palmer PR. Comparison of submarine drive topologies
using multiobjective genetic algorithms. IEEE Veh Technol 2009;58(1):57e68.

[12] Sciberras EA, Norman RA. Multi-objective design of a hybrid propulsion sys-
tem for marine vessels. IET Electr Syst Transp 2012;2(3):148e57.

[13] Ribau JP, Silva CM, Sousa JMC. Efficiency, cost and life cycle CO2 optimization
of fuel cell hybrid and plug-in hybrid urban buses. Appl Energy
2014;129(129):320e35.

[14] Fang L, Qin S, Xu G, Li T, Zhu K. Simultaneous optimization for hybrid electric
vehicle parameters based on multi-objective genetic algorithms. Energies
2011;4(3):532e44.

[15] V€olker T. Hybrid propulsion concepts on ships. In: 33rd international scientific
conference "science in practice"; 2015. p. 66e76. Schweinfurt, Germany.

[16] Mokryani G. Active distribution networks planning with integration of de-
mand response. Sol Energy 2015;122(3):1362e70.

[17] Mora AM, Merelo JJ, Castillo PA, Arenas MG. HCHAC: a family of MOACO al-
gorithms for the resolution of the bi-criteria military unit pathfinding prob-
lem. Comput Oper Res 2013;40(6):1524e51.

[18] Ahmadi MH, Ahmadi MA, Mehrpooya M, Sameti M. Thermo-ecological anal-
ysis and optimization performance of an irreversible three-heat-source ab-
sorption heat pump. Energy Convers Manag 2015;90:175e83.

[19] Ahmadi MH, Ahmadi MA, Bayat R, Ashouri M, Feidt M. Thermo-economic
optimization of Stirling heat pump by using non-dominated sorting genetic
algorithm. Energy Convers Manag 2015;91:315e22.

[20] Ahmadi MH, Ahmadi MA, Sadatsakkak SAJR, Reviews SE. Thermodynamic
analysis and performance optimization of irreversible Carnot refrigerator by
using multi-objective evolutionary algorithms (MOEAs). Renew Sustain

http://refhub.elsevier.com/S0360-5442(19)30712-1/sref1
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref1
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref1
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref1
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref2
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref2
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref2
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref3
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref3
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref3
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref3
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref3
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref4
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref4
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref4
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref5
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref5
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref5
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref6
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref6
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref6
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref6
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref7
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref7
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref7
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref8
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref8
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref8
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref8
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref9
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref9
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref9
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref10
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref10
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref10
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref11
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref11
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref11
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref12
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref12
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref12
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref13
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref13
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref13
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref13
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref14
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref14
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref14
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref14
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref15
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref15
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref15
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref15
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref16
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref16
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref16
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref17
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref17
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref17
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref17
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref18
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref18
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref18
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref18
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref19
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref19
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref19
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref19
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref20
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref20
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref20


Z. Jianyun et al. / Energy 177 (2019) 247e261 261
Energy Rev 2015;51:1055e70.
[21] Sadatsakkak SA, Ahmadi MH, Ahmadi M. Thermodynamic and thermo-

economic analysis and optimization of an irreversible regenerative closed
Brayton cycle. Energy Convers Manag 2015;94:124e9.

[22] S�anchez-Orgaz S, Pedemonte M, Ezzatti P, Curto-Risso PL, Medina A,
Hern�andez AC. Multi-objective optimization of a multi-step solar-driven
Brayton plant. Energy Convers Manag 2015;99. 346-58.

[23] Ghodratnama A, Jolai F, Tavakkoli-Moghaddam R. Solving a new multi-
objective multi-route flexible flow line problem by multi-objective particle
swarm optimization and NSGA-II. J Manuf Syst 2015;36:189e202.

[24] Possel B, Wismans LJJ, Berkum ECV, Bliemer MCJ. The multi-objective network
design problem using minimizing externalities as objectives: comparison of a
genetic algorithm and simulated annealing framework. Transportation 2017:
1e28.

[25] Fr€oberg A. Extending the inverse vehicle propulsion simulation concept-to
improve simulation performance. In: Thesis no. 1181, link€oping studies in
science and technology. Sweden: Link€opings Universitet; 2005.

[26] Holtrop J, Mennen GGJ. An Approximate power prediction method. Int
Shipbuild Prog 1982;29(335):166e70.

[27] Carlton JS. Marine propellers and propulsion. third ed. Oxford, U.K.: Butter-
worth-Heinemann; 2012.

[28] Hou J, Sun J, Hofmann HF. Mitigating power fluctuations in electric ship
propulsion with hybrid energy storage system: design and analysis. IEEE J
Ocean Eng 2017;99:1e15.

[29] Bernitsas MM. KT, KQ and efficiency curves for the Wageningen B-series
propellers. Technical Report. University of Michigan; 1981.

[30] Rizzoni G, Guzzella L, Baumann BM. Unified modeling of hybrid electric
vehicle drivetrains. IEEE ASME Trans Mechatron 1999;4(3):246e57.

[31] Pisu P, Rizzoni G. A comparative study of supervisory control strategies for
hybrid electric vehicles. IEEE Trans Control Syst Technol 2007;15(3):506e18.

[32] Sundstrom O, Guzzella L, Soltic P. Torque-assist hybrid electric powertrain
sizing: from optimal control towards a sizing law. IEEE Trans Control Syst
Technol 2010;18(4):837e49.

[33] Sorrentino M, Mauramati F, Arsie I, Cricchio A, Pianese C, Nesci W. Application
of Willans line method for internal combustion engines scalability towards
the design and optimization of eco-innovation solutions. 2015. p. 468e76.
SAE Technical Paper 2015-24-2397.

[34] Divya KC, Østergaard J. Battery energy storage technology for power sys-
temsdan overview. Electr Power Syst Res 2009;79(4):511e20.

[35] Xu L, Mueller CD, Li J, Ouyang M, Hu Z. Multi-objective component sizing
based on optimal energy management strategy of fuel cell electric vehicles.
Appl Energy 2015;157:664e74.

[36] Chen BC, Wu YY, Tsai HC. Design and analysis of power management strategy
for range extended electric vehicle using dynamic programming. Appl Energy
2014;113(1):1764e74.

[37] Onori S, Serrao L, Rizzoni G. Hybrid electric vehicles. London: Springer; 2016.
[38] Johnson VH. Battery performance models in ADVISOR. J Power Sources

2002;110(2):321e9.
[39] Zahedi B, Norum LE, Ludvigsen KB. Optimized efficiency of all-electric ships by

dc hybrid power systems. J Power Sources 2014;255(-):341e54.
[40] Hung YH, Tung YM, Chang CH. Optimal control of integrated energy man-

agement/mode switch timing in a three-power-source hybrid powertrain.
Appl Energy 2016;173:184e96.

[41] Yang Y, Yang Z, Xu G, Wang N. Situation and prospect of energy consumption
for China's thermal power generation. Proc CSEE 2013;(23):1e11.

[42] Wang B, Min X, Li Y. Study on the economic and environmental benefits of
different EV powertrain topologies. Energy Convers Manag 2014;86(86):
916e26.

[43] Edwards R, Mahieu V, Griesemann J-C, Lariv�e J-F, Rickeard DJ. Well-to-wheels
analysis of future automotive fuels and powertrains in the European context.
SAE Trans 2004:1072e84.

[44] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6(2):182e97.

[45] Rabiee M, Zandieh M, Ramezani P. Bi-objective partial flexible job shop
scheduling problem: NSGA-II, NRGA, MOGA and PAES approaches. Int J Prod
Res 2012;50(24):7327e42.

[46] Sciberras EA, Zahawi B, Atkinson DJ, Juand�o A. Electric auxiliary propulsion for
improved fuel efficiency and reduced emissions. Proc Inst Mech Eng J Mater
Eng 2015;229(1):36e44.

[47] Sandmo T. The Norwegian Emission Inventory 2011: documentation of
methodologies for estimating emissions og greenhouse gases and long-range
transboundary air pollutants. Statistics Norway; 2011.

[48] Tsolakis A, Megaritis A, Wyszynski ML, Theinnoi K. Engine performance and
emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester)
blends with EGR (exhaust gas recirculation). Energy 2007;32(11):2072e80.

[49] Diesel-electric Propulsion Plants: a brief guideline how to engineer a diesel-
electric propulsion system. http://marine.man.eu/. Man Diesel, (accessed 15
September 2016).

[50] AHTS propulsion for swire pacific offshore. http://marine.man.eu/, (accessed
30 November 2015).

http://refhub.elsevier.com/S0360-5442(19)30712-1/sref20
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref20
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref21
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref21
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref21
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref21
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref22
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref22
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref22
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref22
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref22
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref23
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref23
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref23
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref23
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref24
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref24
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref24
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref24
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref24
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref25
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref25
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref25
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref25
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref25
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref25
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref26
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref26
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref26
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref27
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref27
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref28
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref28
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref28
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref28
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref29
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref29
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref30
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref30
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref30
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref31
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref31
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref31
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref32
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref32
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref32
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref32
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref33
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref33
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref33
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref33
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref33
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref34
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref34
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref34
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref34
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref34
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref35
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref35
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref35
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref35
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref36
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref36
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref36
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref36
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref37
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref38
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref38
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref38
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref39
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref39
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref39
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref40
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref40
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref40
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref40
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref41
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref41
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref41
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref42
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref42
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref42
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref42
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref43
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref43
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref43
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref43
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref43
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref44
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref44
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref44
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref45
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref45
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref45
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref45
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref46
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref46
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref46
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref46
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref46
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref47
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref47
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref47
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref48
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref48
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref48
http://refhub.elsevier.com/S0360-5442(19)30712-1/sref48
http://marine.man.eu/
http://marine.man.eu/

	Bi-objective optimal design of plug-in hybrid electric propulsion system for ships
	1. Introduction
	2. Mathematical modeling
	2.1. Ship dynamics
	2.2. Propellers
	2.3. Gearboxes
	2.4. Motors
	2.5. Generators
	2.6. Diesel engines
	2.7. Battery

	3. Energy management strategy
	4. Multi-objective optimization
	4.1. Optimization variables
	4.2. Objective function
	4.2.1. Fuel consumption f1(x)
	4.2.2. GHG emissions f2(x)

	4.3. Constraints
	4.3.1. Power balance constraint
	4.3.2. Generator set constraint
	4.3.3. Battery constraint
	4.3.4. Ship speed constraint

	4.4. Optimization algorithm

	5. Results and discussion
	5.1. Operating cycle
	5.2. Optimization results
	5.3. Discussion
	5.4. Hardware-in-the-loop experiment
	5.5. Sensitivity analysis

	6. Conclusion
	Acknowledgement
	Appendix
	References


