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H I G H L I G H T S

• A bi-level method is proposed for the optimization of a hybrid electric propulsion system.

• Optimal component sizing and energy management are implemented simultaneously.

• A modified adaptive equivalent consumption minimization strategy is developed.

• The proposed bi-level method outperforms single-level optimizations.
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A B S T R A C T

Hybrid electric propulsion systems attract considerable research interest because of their potential to reduce fuel
consumption, greenhouse gas emission, and net present cost. However, independent optimization for component
sizing or energy management may lead to performance degradation. The present study proposes a multiobjective
bi-level optimization that performs component sizing at the upper level and energy management at the lower
level simultaneously. Multiobjective particle swarm optimization is developed for the upper level because of its
merits in computational time and generational distance. An adaptive equivalent consumption minimization
strategy, which has a light computational load, has been modified for the lower level by updating the equiva-
lence factor based on the battery stage of charge and engine efficiency. Real-time hardware-in-the-loop ex-
periments are carried out to validate the effectiveness of the optimization. The results of the proposed bi-level
optimization are compared with two independent single-level optimizations. The optimal solution of the pro-
posed method is significantly superior to the single-level optimizations. Furthermore, the result of the single-
lower-level optimization is closer to that of the bi-level optimization than that of the single-upper-level opti-
mization.

1. Introduction

As stringent emission legislations have been enacted on the shipping
industry, hybrid electric propulsion systems (HEPSs) have attracted
considerable interest from several academic institutions and industries
because of their potential to reduce fuel consumption, greenhouse gas
(GHG) emissions, and cost [1,2]. In HEPSs, with the help of motors and
power electronics, diesel engines can function in high efficiency areas
by charging and discharging batteries under dynamic operating con-
ditions. The performance of an HEPS is mainly determined by two le-
vels of operation [3,4]. One, known as the upper level, is the compo-
nent sizing of engine displacement, motor diameter, battery capacity,
and others, which should be carefully designed before manufacturing
an HEPS [3,5]. The other, known as the lower level, is the multi-energy

management that must be carefully controlled during operation after
manufacturing the HEPS [4,6]. Therefore, the ideal performance of the
HEPS can be achieved with optimal component sizing and energy
management strategy during the operation. This study focuses on bi-
level optimization considering component sizing and energy manage-
ment simultaneously for HEPSs.

The previous study on the performance improvement of HEPSs can
be mainly classified into two categories, which consider one of the two
levels. The first category uses optimal design methods to determine
component sizes in terms of one or more of the three objectives
(minimum fuel consumption, GHG emission, and cost) but ignores the
optimization of energy management. For example, a genetic algorithm
[3], two heuristic criteria [7], particle swarm optimization [8], and
non-dominated sorting genetic algorithm II [9] were developed to
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Nomenclature

Abbreviations

AECMS adaptive equivalent consumption minimization strategy
DG diesel generator
DP dynamic programming
ESS energy storage system
GA genetic algorithm
GHG greenhouse gas
HEPS hybrid electric propulsion systems
MAECMS modified adaptive equivalent consumption minimization

strategy
MOPSO multiobjective particle swarm optimization
NPC net present cost
NSGA-II non-dominated sorting genetic algorithm
PSO particle swarm optimization
SOC stage of charge

Symbols

A A/e o blade–area ratio
Cair air resistance coefficient
CF frictional resistance coefficient
CW wave-making resistance coefficient
cbat unit cost per capacity of ESS ($/kWh)
cDG unit cost of DG ($/kW)
cfuel unit cost of diesel fuel ($/kg)
cM unit cost of motor ($/W)
csho unit cost of shore electricity ($/kWh)
D propeller diameter (m)

+Di distance from point i in the Pareto solution set to the ideal
point

Di distance from point i in the Pareto solution set to the nadir
point

dM diameter of motor rotor (m)
Esho consumed shore electricity (kWh)
eDk Willans line coefficients of diesel engine (k = 00, 01, 02,

10, 11, loss0, loss2)
eMk Willans line coefficients of motor (k = 00, 01, 02, 10, 11,

loss0, loss2)
Fij jth objective of point i
gbat annual inflation rate of the acquisition cost of battery
gfuel annual inflation rate of diesel fuel
gsho annual inflation rate of shore electricity
HLHV lower heating value of diesel fuel (J/kg)
I annual interest rate
Ibat output current of battery cell (A)
Ibat_ max maximum current of charging (A)
Ibat_ min minimum current of discharging (A)
Iele life cycle average GHG intensity of shore electricity (kg/

kWh)
Ifuel life cycle average GHG intensity of diesel fuel (kg/kg)
i gear ratio of gearbox
J advance coefficient of propeller
KT thrust coefficient of propeller
KQ torque coefficient of propeller
lM length of the rotor (m)
m mass of ship (kg)
mf mass flow of diesel fuel (kg/s)
nrep total number of battery replacements during service life
msu fuel consumption of DG per startup (kg)
mvir virtual fuel consumption rate (kg/s)
NESS net present cost of battery replacement ($)
Nini net present cost of initial equipment investment ($)

Nope net present cost of system operation ($)
n propeller speed (r/min)
nESS number of battery modules in ESS
nsu number of DG startup times
P D/ pitch ratio
Paux auxiliary load (W)
Pbat terminal power of battery cell (W)
PD output power of diesel engine (kW)
PDG rate_ rated power of DG (kW)
PESS output power of ESS (kW)
P t( )hot hotel load (kW)
P t( )M output power of motor (kW)
PM in_ input power of motor (kW)
PM rate_ rated power of motor (kW)
Ppro propulsive load (kW)
Preq total power requirement (kW)
Pser service load (kW)
pDa available mean effective pressure of diesel engine (Pa)
pDe mean effective pressure of diesel engine (Pa)
pDloss mean effective pressure loss of diesel engine (Pa)
pMa available mean effective pressure of motor (Pa)
pMe mean effective pressure of motor (Pa)
pMloss equivalent mean effective pressure loss of motor (Pa)
Q torque of one propeller (Nm)
Qbat battery cell capacity (Ah)
QESS ESS capacity (Ah)
RAir air resistance (N)
Rbat internal resistance of battery cell (Ω)
RF frictional resistance (N)
Ri distance index
Rtotal ship resistance (N)
RW wave-making resistance (N)
s equivalence factor of virtual fuel consumption
Sair advance facing area of the ship in the air (m2)
SG on/off state factor of generator
Shull wet-surface area of hull (m2)
sij j-th objective of point i after non-dimensionalization
T effective thrust of one propeller (N)
TD output torque of diesel engine (Nm)
TM output torque of motor (Nm)
t1 thrust deduction coefficient
tDG startup time limitation of DG (s)
tcount time duration considered in the calculation of fuel con-

sumption (s)
Vbat open-circuit voltage of battery cell (V)
VD engine cylinder displacement (m3)
VM volume of motor rotor (m3)
v velocity of ship (m/s)
vD average velocity of piston (m/s)
vM velocity of a point at the rotor surface (m/s)
vmax maximum speed of ship (m/s)
vreq peed requirement (m/s)
x optimization parameter set
xE subset of energy management parameters
xS subset of sizing parameters
Y lifetime of ship (year)
YESS lifetime of lithium-ion battery (year)
Z number of propeller blades

Greek symbols

cgen correction factor accounting for electrical components
colm Coulombic efficiency

k¯ ( )DGs average efficiency of DGs
t( )G efficiency of generator
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select the size of components of HEPSs. In this category, because of
simplicity, rule-based energy management strategies with static para-
meters are used. Therefore, the performance of the optimal solution is
rather limited. Moreover, the optimal solution does not necessarily
achieve optimal performance, even with other advanced energy man-
agement strategies.

The second category is to use optimal or near-optimal strategies to
manipulate energy flow management during operation aiming to
achieve minimum fuel consumption, though, for HEPSs with predefined
sizes. For example, model predictive control [4], fuzzy-based particle
swarm optimization [6], equivalent cost minimization strategy [10],
and stochastic energy management strategy [11] were applied to
HEPSs. However, the predefined sizes may not be optimized. When the
sizes change, the constraints of the optimal energy management
change; thereafter, the optimal solution for energy management will
change accordingly.

In spite of the increasing number of studies on HEPSs, the optimi-
zation of HEPSs synchronously considering component sizing and en-
ergy management, to the best of our knowledge, has not been reported
yet. Unfortunately, independent optimization for component sizing or
energy management may lead to performance degradation. Therefore,
this study proposes a bi-level optimization framework to integrate
component sizing (upper level) and energy management (lower level)
into a single algorithm for HEPSs. The bi-level optimization has ex-
hibited advantages over single-level optimizations in the planning and
development of an islanded microgrid [12], a stand-alone hybrid power
system [13], and a hybrid electric vehicle [14,15]. Nevertheless, sig-
nificant differences are observed between the HEPSs and those systems.
For example, comparing HEPS ships with hybrid electric vehicles, long-
range and durable endurance is essential for the former, whereas the
latter can be refilled, recharged, or conveniently repaired. Moreover,
HEPS vessels use multiple gensets or multiple types of prime movers
that are connected to a common power bus and independently con-
trolled, whereas hybrid vehicles use a set of power devices. In addition,
HEPS vessels typically can sail for a long time on a relatively stable
power, and it is inefficient to apply regenerative braking technology
because of the lack of direct adhesion between the propeller and the
water, in contrast to hybrid vehicles that are likely to stop-and-go fre-
quently.

The bi-level optimization, which relies on an integrated algorithm,
was more complex than the traditional independent single-level algo-
rithms. The contradiction between the effectiveness to obtain an op-
timal solution and computational load is more significant for the in-
tegrated algorithm. Thus, the selection of the algorithms for the upper
and lower levels is significant.

Regarding the multiobjective optimization of the size of components
at the upper level, there are alternative approaches for design space
exploration. One class of approaches aggregates the objectives into a
single-objective formulation by introducing weighting factors. Then,
the problem is solved by single-objective optimization tools, such as the
Newton–Raphson method [16] and response surface method [17]. The
drawback is that inappropriate weighting factors can deteriorate the
optimization performance; thereafter, the selection of the weighting
factors becomes a challenge. To overcome this drawback, Pareto-based
approaches such as multiobjective ant colony optimization (MOACO)
[18], non-dominated sorting genetic algorithm II (NSGA-II) [19], and
multiobjective particle swarm optimization (MOPSO) [20] have been
applied. MOACO has the problem of premature convergence [21]. The
comparison between MOPSO and NSGA-II showed that MOPSO

outperforms NSGA-II in terms of computational time and generational
distance in most cases [22]. Therefore, in this study, MOPSO has been
selected for component sizing optimization at the upper level.

For optimal control of energy management at the lower level, dy-
namic programming (DP) [15], multiobjective electromagnetism‐like
algorithm [23] and simulated annealing method [24] have been de-
veloped to obtain a global optimal energy management schedule.
However, because of the heavy computational load, these global opti-
mization approaches cannot be directly used for high-efficiency appli-
cations in real time [25]. As a result, rule-based control approaches
(abstracted from the optimization results with DP algorithm) [26–28],
driving cycle analysis [29], model predictive control [4,30], and
equivalent consumption minimization strategy (ECMS) [31] have been
explored. Among them, ECMS, initially introduced in 1999 [32], has
the potential to reduce computational complexity by transforming the
global optimization problem into a local (instantaneous) problem based
on Pontryagin’s minimum principle [33]. A key feature that determines
the effectiveness of ECMS is the equivalence factor of the electrical
energy with respect to the fossil energy, which is affected by the effi-
ciency of diesel engines, batteries, and related energy flows. Instead of
setting the equivalence factor as a constant as per previous studies
[32,34], adaptive ECMSs have been recently proposed to automatically
tune the equivalence factor according to the stage of charge (SOC) of
the battery [35] under predicted driving cycles [36] and recognized
driving patterns [37]. To compensate for the lack of consideration of
engine efficiency, this paper proposes a modified adaptive ECMS
(MAECMS), which can update the equivalence factor based on the in-
stantaneous efficiency of the battery and the engine.

The bi-level multiobjective optimization method proposed in this
paper consists of MOPSO for component sizing at the upper level and
MAECMS for energy management at the lower level. The optimization
problem considers three optimization objectives: fuel consumption,
GHG emission, and net present cost (NPC). The effectiveness of the
proposed method is demonstrated by considering an HEPS of an an-
chor-handling tug supply (AHTS) vessel. The independent optimiza-
tions at the upper and lower levels, named single-upper-level and
single-lower-level optimizations, respectively, are performed to high-
light the significance of the proposed method. The performance is
verified by hardware-in-the-loop (HIL) experiments.

The major contributions can be summarized as follows: (1) The bi-
level multiobjective optimization framework has been proposed for the
design of HEPSs. The framework simultaneously addresses component
sizing and energy management, which were independently optimized
in the existing literature despite the deep interrelationship between
them. (2) MAECMS, which can efficiently achieve a local optimum
solution with reduced computational load, is developed for the lower-
level implementation of bi-level optimization. The MAECMS can im-
prove the traditional AECMS by adaptively adjusting the equivalence
factor according to the instantaneous operation of the battery and diesel
engines. (3) HIL experiments are conducted to validate the effectiveness
of the proposed method.

The rest of the paper is organized as follows: the description and
modeling of the HEPS are detailed in Section 2. The optimization pro-
blem has been formulated in Section 3. Section 4 demonstrates the bi-
level optimization method. Results have been discussed in Section 5.
Finally, Section 6 concludes the article.

G0 base efficiency of generator
Gb efficiency of gearbox

t( )M efficiency of motor
t( ) ratio of generator power to its rated power

t( )D angular velocity of diesel engine (rad/s)
t( )M angular velocity of motor (rad/s)

seawater density (kg/m3)
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2. System description and modeling

Fig. 1 shows a twin-screw HEPS. There are two identical propellers;
each is driven by a motor through a gearbox. There are two identical
generators; each runs on a diesel engine. Generators and motors share a
power bus with the energy storage system (ESS) and the shore power
connection. In addition, hotel and service loads consume electricity
from the power bus.

2.1. Ship dynamics

The longitudinal dynamics of a twin-screw ship is given by [38,39]:

=m v
t

t T t R td
d

2(1 )· ( ) ( )total1 (1)

where m is the mass of the ship, v is the velocity of the ship, t1 is the
thrust deduction coefficient, T t( ) is the thrust, and R t( )total is the ship
resistance.

2.1.1. Resistance
The ship resistance includes frictional resistance R t( )F , wave-

making resistance R t( )W , and air resistance R t( )Air [39,40].

= + +R t R t R t R t( ) ( ) ( ) ( )total F W Air (2)

=R t C S v t( ) 1
2

· ( )F F hull
2

(3)

=R t C S v t( ) 1
2

· ( ) andW W hull
2

(4)

=R t C S v t( ) 1
2

· ( )Air Air Air
2

(5)

where Cair is the air resistance coefficient, CF is the frictional resistance
coefficient, CW is the wave-making resistance coefficient, is the sea-
water density, S is the wet-surface area of the hull, and Sair is the ad-
vance facing area of the ship in the air.

2.1.2. Propellers
The two propellers are identical. For each propeller, the mathema-

tical models of the thrust T t( ) and the torque Q t( ) are given below
[39,40]:

=T t K D n t( ) · ( ) andT
4 2 (6)

=Q t K D n t( ) · ( )Q
5 2 (7)

where KT is the thrust coefficient, KQ is the torque coefficient, n is the
propeller speed in r/min, and D is the propeller diameter. KT and KQ is
given by [41,42]:

=K f J t P D A A Z( ( ), / , / , )T T e o (8)

=K f J t P D A A Z( ( ), / , / , ) andQ Q e o (9)

=J t D v t
n t

( ) · ( )
( ) (10)

where J t( ) is the advance coefficient, P D/ is the pitch ratio, A A/e o is the
blade–area ratio, and Z is the number of propeller blades.

2.2. Gearboxes

There are two identical gearboxes. Each connects a motor and a
propeller. Assuming that the mechanical loss is ignorable, the input
torque of the gearbox is the same as the output torque of the motor, as
well as the angular velocity and the power. The mathematical de-
scription is given below:

=t i n t( )
30

· ( )M (11)

=T t
i

Q t( ) 1 · ( ) andM
Gb (12)

=P t T t t( ) ( )· ( )M M M (13)

where t( )M is the angular velocity of the motor, T t( )M is the output
torque of the motor, P t( )M is the output power of the motor, and i Gb
are the gear ratio and efficiency of gearbox.

2.3. Motors

The motors are modeled based on the Willans line method [43–46].
By changing the two “size parameters,” i.e., the diameter and length of
the motor rotor, the Willans line method is able to establish a scalable
model for a series of motors belonging to the same category. To achieve
the scalability, two concepts originated from the field of internal
combustion engines are introduced, namely, mean effective pressure
p t( )Me and available mean effective pressure p t( )Ma . Regarding the
motor, p t( )Me can be interpreted as the ability of a unit volume of the
rotor to provide torque; p t( )Ma represents the maximum mean effective
pressure when all the consumed electrical energy is converted into
mechanical energy [43].

=p t
V

T t( ) 1
2

· ( )Me
M

M (14)

=p t
V

P t
t

( ) 1
2

·
( )

( )
andMa

M

M in

M

_

(15)

=V d l
2M
M

M

2

(16)

where P t( )M in_ is the input power of the motor, VM is the volume of the
motor rotor, dM is the diameter of the rotor, and lM is the length of the
rotor.

According to the Willans line method, the relationship between
p t( )Me and p t( )Ma are described below [43]:

=p t e v e v p t p t p v( ) [ ( ) ( )· ( )]· ( ) ( )Me M M M M Ma Ma Mloss M0 1 (17)

Fig. 1. Twin-screw HEPS with ESS and shore power connection.
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= + +
= +

= +
=

e v e e v t e v t
e v e e v t

p v e e v t
v t d t

( ) · ( ) · ( )
( ) · ( )

( ) · · ( )
( ) · ( ),

M M M M M M M

M M M M M

Mloss M Mloss Mloss M

M M M

0 00 01 02
2

1 10 11

,0 ,2
2

1
2 (18)

where v t( )M is the velocity of a point at the rotor surface, p v( )Mloss M is
the equivalent mean effective pressure loss of the motor, and eM00, eM01,
eM02, eM10, eM11, eMloss,0, and eMloss,2 are the Willans line coefficients that
are considered to be the same for motors of the same category [43].

Therefore, the Willans line coefficients can be identified by using
the data of a baseline motor. After that, the mean effective pressure
p t( )Me of a scalable motor with new values of dM and lM can be calcu-
lated from (17). Substitution of (13) and (15) yields the calculation of
the efficiency t( )M , as given below:

= =t P t
P t

p t
p t

( ) ( )
( )

( )
( )M

M

M in

Me

Ma_ (19)

2.4. Diesel engines

A scalable diesel engine model is established based on the Willans
line method [44], which has been experimentally validated on different
engines [43]. Diesel engines can be scalable, along with the key para-
meter, known as engine cylinder displacement. The mean effective
pressure p t( )De and the available mean effective pressure p t( )Da are
defined below:

=p t
V

T t( ) 4 · ( )De
D

D (20)

=p t H
V

m t
t

( ) 4 ·
( )
( )

andDa
LHV

D

f

D (21)

=V S B·
2D D
D

2

(22)

where VD is the engine cylinder displacement; T t( )D , t( )D , BD, and SD
are the output torque, angular velocity, bore, and stroke of the diesel
engine, respectively; HLHV is the lower heating value of the diesel fuel;
and m t( )f is the mass flow of the diesel fuel.

Similar to the modeling of motors, the relationship between the
mean effective pressure and the available mean effective pressure of the
diesel engine can be expressed as follows:

=p t e v e v p p t p v( ) [ ( ) ( )· ]· ( ) ( )De D M D M Da Da Dloss M0 1 (23)

= + +
= +

= +
=

e v e e v t e v t
e v e e v t

p v e e v t
v t t

( ) · ( ) · ( )
( ) · ( )

( ) · · ( )
( ) · ( ),

D M D D D D D

D M D D D

Dloss M Dloss Dloss D

D
S

D

0 00 01 02
2

1 10 11

,0 ,2
2

D
(24)

where p t( )Dloss is the mean effective pressure loss of the diesel engine
and v t( )D is the average velocity of the piston. The Willans line coef-
ficients, eD00, eD01, eD02, eD10, eD11, eDloss,0, and eDloss,2, are considered to be
constants for diesel engines belonging to the same category [43].

The Willans line coefficients can be identified by using data of a
baseline diesel engine. With T t( )D and VD, the mean effective pressure
p t( )De can be calculated from (20). After that, the available mean ef-
fective pressure p t( )Da of a newly designed engine can be calculated
from (23). Then, the mass flow mf can be obtained from (21).

2.5. Generators

Two identical brushless synchronous generators run on two diesel
engines. A generator is combined with a diesel engine to form a diesel
generator (DG). The specifications of the generator should match those
of the corresponding diesel engine. For each generator, the output

power P t( )DG is calculated according to the following equations:

=P t S t t P t( ) ( ) ( ) ( )DG G G D (25)

in which

=P t T t t( ) ( ) ( )D D D (26)

=t f t( ) ( ( )) andG G corr0 (27)

=t P t
P

( ) ( )D

D rate_ (28)

where S t( )G is a binary number that denotes the on/off state of the
generator and P t( )D and PD rate_ are the output power and the rated
power, respectively, of the diesel engine. Considering that efficiency
varies with the generator power, the efficiency t( )G is corrected from
the base efficiency G0 following the curve f ( )corr (Fig. 2) [47]. The
symbol t( ) represents the ratio of the generator power to its rated
power.

2.6. ESS

Lithium-ion batteries are used in the ESS because of high energy
density and good storage efficiency [48]. The ESS consists of battery
modules that are connected in series. Each module has 40 battery cells.
Rint model [15,49] is adopted to model the ESS. For each battery cell,
the output current I t( )bat is obtained by [33,50]:

=I t
V t V t R P t

R
( )

( ) ( ) 4 · ( )
2bat

bat bat bat bat

bat

2

(29)

where V t( )bat , Rbat, and P t( )bat are the open-circuit voltage, internal
resistance, and terminal power of the battery cell, respectively.

The dynamics of the battery SOC is expressed as [15]:

=SOC t
I t

Q
( )

( )bat colm

bat (30)

where colm is the Coulombic efficiency and Qbat is the capacity of the
battery.

The overall output power P t( )ESS of the ESS is calculated as:

=P t n P t( ) 40 ( )ESS ESS bat (31)

where nESS is the number of battery modules in the ESS.

3. Problem formulation

The bi-level optimization proposed in this paper integrates compo-
nent sizing and energy management into a single algorithm. The
mathematical description of the optimization problem is given below.

= =
=

f f f

s t h i m
g j n

x x x

x
x

min{ ( ), ( ), ( )}

. . ( ) 0, 1, 2, 3, ...,
( ) 0, 1, 2, 3, ..., ,

i

j

x 1 2 3

(32)

where optimization parameter set x , the optimization objectives ( f x( )1 ,
f x( )2 , and f x( )3 ) and constraints (h x( )i andg x( )j ) are defined in the

Fig. 2. Efficiency correlation of generators [47].
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following subsections:

3.1. Optimization parameters

The optimization parameter set x consists of nine parameters.

=
=

=

t
V d l i n

t S t S t P t P t

x x x
x

x

( , ( ))
( , , , , )

( ) ( ( ), ( ), ( ), ( )) ,
D M M ESS

G G D D

S E

S

E

T

T

1 2 1 2
T (33)

where xS is the subset of sizing parameters and tx ( )E is the subset of
energy management parameters. Five elements are included in xS: the
engine cylinder displacement VD, the motor diameter dM , the motor
lengthlM , the number of battery modules nESS, and the gear ratio i. Four
time-dependent elements are included in tx ( )E : the binary switch
parameters (S t( )G1 andS t( )G2 ) and the output power (P t( )D1 and P t( )D2 )
of the two DGs.

3.2. Objectives

The following three factors are considered in bi-level optimization:
fuel consumption, GHG emission, and NPC. The aforementioned factors
are minimized by the upper-level optimization, which calls for the re-
sults of the lower-level optimization in each iteration. The lower level is
required only to minimize the fuel consumption because the amount of
fuel consumption on a voyage determines the GHG emission and the
operation cost away from the shore power station.

3.2.1. Fuel consumption ( f x( )1 )
The total fuel consumption mfuel accounts for the operation and

startup of the DGs.

= = +f m m t t m nx( ) ( )d |fuel
t

f su su
t

1 0 0
count count

(34)

where tcount is the time duration considered in the calculation of fuel
consumption, msu is the fuel consumption of DG per startup, and nsu is
the number of the DG startup times during tcount. The value of msu is
approximately 20% of the fuel consumption at the operating point
where the diesel engine offers its maximum power [6].

3.2.2. GHG emission ( f x( )2 )
The total GHG emission mGHG considers the combustion of the diesel

fuel and the generation of the shore electricity.

= = +f m m I E Ix( ) |GHG fuel fuel sho
t

ele2 0
count (35)

where Ifuel is the life cycle average GHG intensity of diesel fuel, Esho is
the shore electricity consumed during tcount, and Iele is the life cycle
average GHG intensity of shore electricity.

3.2.3. NPC ( f x( )3 )
The NPC is used to evaluate the economic feasibility that includes

equipment purchase, system operation, and battery replacement [51].

= = + +f NPC N N Nx( ) ini ope ESS3 (36)

whereNini, Nope, and NESS are the costs of initial equipment investment,
system operation, and battery replacement, respectively.

The initial investment Nini can be expressed as [45]:

= + +N c P c c P2 (1 ) 2ini DG DG rate gen M M_ (37)

where cgen is the unit power cost of the DGs, cM is the unit power cost of
motors, PDG rate_ is the rated power of the DGs, PM rate_ is the rated power
of motors, and cgen is the correction factor accounting for electrical
components.

The cost of system operation Nope can be obtained by [52]:
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where cfuel and csho are the unit costs of diesel fuel and shore electricity,
respectively, gfuel and gsho are the annual inflation rates of diesel fuel and
shore electricity, respectively, and I is the annual interest rate.

The cost of battery replacement NESS can be calculated by [52]:
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where nrep is the total number of battery replacements during service
life Y , cbat is the unit cost per capacity of the ESS, QESS is the ESS ca-
pacity, gbat is the annual inflation rate of the acquisition cost of the
battery, and YESS is the longevity of lithium-ion battery.

3.3. Constraints

Constraints related to voyage requirements and component capacity
limitations are considered for the minimization of the objective func-
tions defined in (32). All the five constraints work for the upper-level
optimization, and four of the five (except the constraint of shore power)
work for the lower-level optimization. They are detailed in the fol-
lowing subsections.

3.3.1. Power balance constraint
The total power requirement P t( )req accounts for the propulsive load

P t( )pro and the auxiliary load P t( )aux . The propulsive load P t( )pro is the
sum of the input power to the two motors. The auxiliary load P t( )aux
includes hotel load P t( )hot and service load P t( )ser . The mathematical
description is given below.

= +P t P t P t( ) ( ) ( )req pro aux (41)

=P t P t( ) 2 ( ) andpro M in_ (42)

= +P t P t P t( ) ( ) ( )aux hot ser (43)

The power requirement P t( )req is fulfilled together by the two DGs
and the ESS. The mathematical description is given below. By com-
paring (41) and (44), we can see that there exists a power balance
between the power consumers and producers.

+ + =P t P t P t P t( ) ( ) ( ) ( )DG DG ESS req1 2 (44)

3.3.2. Response time of the DGs
The response time during the startup of the DGs is considered.

Therefore, the time interval ( +t tk k1 ) between the two startup opera-
tions should be greater than the limit tDG [53]. In other words, the DGs
cannot start or stop arbitrarily without considering the response time
limit.

+t t tk k DG1 (45)

3.3.3. ESS operation constraint
The ESS is subject to two limits. The first is the SOC boundary de-

fined by SOCb low_ and SOCb up_ . The second is the limitation of the
charging and discharging currents defined by Ibat_ min and Ibat_ max. The
battery current Ibat should be within the range.

< <SOC SOC t SOC( )b low b up_ _ (46)

I I t I( )bat bat bat_ min _ max (47)

3.3.4. Shore power constraint
The charging time tchg of each voyage should be less than the

maximum charging time tchg_ max scheduled by the voyage. Therefore,
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t tchg chg_ max (48)

3.3.5. Maximum speed constraint
The maximum speed vmax of the ship should exceed the speed re-

quirement vreq of the studied voyage.

v vreqmax (49)

4. Bi-level optimization method

The flowchart of the proposed bi-level optimization method is de-
picted in Fig. 3. MOPSO is used for the optimization of the five sizing
parameters defined by xS at the upper level. An MAECMS is developed
for the optimization of the four energy management parameters defined
by tx ( )E at the lower level. The lower level is used to analyze the op-
timal energy management schedule. The MOPSO algorithm provides
feasible sizing parameters to the MAECMS, and the MAECMS provides
feedback of the optimal energy management parameters to MOPSO.
Afterward, MOPSO evaluates the performance regarding the three op-
timization objectives and obtain optimal solutions after several itera-
tions.

4.1. MOPSO algorithm

MOPSO is a meta-heuristic method inspired by the collective beha-
vior of birds and is widely used to solve constrained nonlinear multi-
objective optimization problem because of simplicity, convergence
speed, and robustness [54]. Referring to [22], an external repository is
adopted by the MOPSO algorithm to archive previously found non-
dominated vectors, and the mutation operator acts both on the particles
of the swarm and on the range of each design variable of the studied
problem. The behavior of a particle j is defined by two attributes: a
position vector xSj containing the five sizing parameters and a velocity
vector vSj representing the moving velocity from position xSj of the k-th
iteration to a specified position of the (k + 1)-th iteration. The MOPSO
algorithm is given below.

1. Initialization
(1) Generate a swarm of original particles randomly for the upper

level.
(2) Send the values of the original particles to the lower level, which

implements energy management optimization for each particle.
Thereafter, in addition to the performance, the values of the five sizing
parameters and the four energy management parameters of each par-
ticle are stored in its memory.

(3) Initialize the velocities =v 0Sj
k for =k 1, and initialize the

Fig. 3. Flowchart of the proposed bi-level optimization (MOPSO for the upper level and MAECMS for the lower level).
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historic best position that particle j has had, =p xSj best
k

Sj_ for =k 1.
Store the non-dominated positions of the original particles in the re-
pository.

(4) Generate hypercubes of the design space explored so far, and
locate the particles in the repository in the hypercubes according to the
value of objectives.

2. Update the velocities using the following iteration formula:

= + ++ a r a rv v p x g x( ) ( )Sj
k 1

Sj
k

Sj best
k

Sj
k

S best
k

Sj
k

1 1 _ 2 2 _ (50)

where +vSj
k 1 is the velocity of the particle j of the +(k 1) iteration, is

the inertia weight, a1 is the cognitive parameter, a2 is the social para-
meter, r1 and r2 are two random numbers in the range [0,1], pSj best

k
_ is

the historic best position that particle j has had of the k iteration, and
gS best

k
_ is the position taken from the repository according to the Pareto

dominance criterion, which is as follows: Assign the non-empty hy-
percubes with a fitness index equal to the result of dividing 1 by the
number of particles that they contain [22]. Select one hypercube using
the roulette wheel selection based on the fitness index. Then, gS best

k
_ is

set to be a particle randomly chosen from the selected hypercube.
3 Update the position of each particle as per the following formula

and send them to the lower level:

= ++ +x x vSj
k 1

Sj
k

Sj
k 1 (51)

where +xSj
k 1 is the position of the particle j of the +(k 1) iteration.

4. Send the values of the position of the particles to the lower level
and implement energy management optimization. Thereafter, the
memory of the particles is stored.

5. Find the global best position +gS best
k 1

_ according to the Pareto
dominance criterion as described in step 2.

6. If pSj best
k

_ is dominated by the current position xSj
k , update the

historic best position as =+p xSj best
k 1

Sj
k

_ . If pSj best
k

_ does not dominate or be
dominated by xSj

k , +pSj best
k 1

_ is set to be one of the positions xSj
k and pSj best

k
_

randomly.
7. Repeat steps 2–5 until the maximum number of iterations Genmax

is achieved.

4.2. MAECMS

This study modifies the traditional adaptive ECMS based on two
aspects. The first aspect is to extend the optimization time step, which
helps reduce the computational load. As it takes time to realize the
values of the four energy management parameters, the optimization
time step does not make sense if the step is less than the engine startup
time. Generally, diesel engines in mainstream ships take more than 45 s
to startup [53]. Moreover, ship voyages are not as changeable as those
of cars in urban traffic. Therefore, this study sets the time step, re-
presented by tDG, at 60 s. This measure can reduce the computing time.
In addition, to enhance the computational efficiency, the proposed
MAECMS eliminates the undesired control candidates before each op-
timization time step if (52) is satisfied.

+ < <
+ > >

P t P t P t SOC t SOC
P t P t P t SOC t SOC

( ) ( ) ( ) 0, ( )
( ) ( ) ( ) 0, ( )

DG DG req b low

DG DG req b up

1 2 _

1 2 _ (52)

The second aspect is the calculation of the equivalent factor com-
paring electrical energy consumption with fuel consumption by

considering the current operation of the diesel engines other than the
battery SOC. The mathematical derivations are detailed in the following
paragraphs:

Basically, the MAECMS assumes that the battery SOC variation at
any time will be compensated in the future by the diesel engines [55].
Thus, the equivalent fuel consumption rate m t( )f eqv, accounts for two
parts: the mass flow of the diesel fuel m t( )f and the virtual fuel con-
sumption rate m t( )vir .

= +m t m t m t( ) ( ) ( )f eqv f vir, (53)

The calculation of the virtual fuel consumption rate m t( )vir is given
by:

=m t s t
H

P t( ) ( ) ( )vir
LHV

ESS (54)

where s t( ) is the equivalence factor that converts electrical energy
consumption into virtual fuel consumption.

The optimization for energy management is resolved by time steps
one by one in sequence. In each time step, the control problems are
formulated as below:

+ =m k m k k t
t

min[ ( ) ( )], 1, 2, ...,
k

f vir
total

DGx ( )E (55)

where

=m k m t t( ) ( )df
k t

kt

f
( 1) DG

DG
, and (56)

=m k m t t( ) ( )dvir
k t

kt

vir
( 1) DG

DG

(57)

The average efficiency k¯ ( )DGs of the two DGs is calculated by:

=
+

k
P t P t t

H m k
¯ ( )

( ( ) ( ))d

( )
k t

k t

DG DG

LHV f
DGs

( 1)

·

1 2
DG

DG

(58)

The electrical energy variation of the ESS is calculated by:

= +E k P t P t t( ) ( ( ) ( ))dESS
k t

k t

ESS ESS R
( 1)

·

_
DG

DG

(59)

where PESS R_ is the power loss related to the internal resistance of the
battery.

Thus, based on the efficiency of the DG operating in the current time
step, the virtual fuel consumption m k( )vir can be formulated as below:

=m k E k
H

( ) ( )
· ¯vir

ESS

LHV DGs (60)

Substituting (57) and (60) into (54), the equivalence factor s k( ) is
given by:

=s k E k

P t t
( ) ( )

¯ · ( )d

ESS

k t

k t

ESSDGs
( 1)

·

DG

DG

(61)

Furthermore, substituting (58) and (59) into (61) yields the calcu-
lation of s k( ) as below:

Table 1
Algorithms and results of three optimization frameworks.

Optimization framework Algorithm for the upper level Algorithm for the lower level Average statistics of the Pareto solution set

Fuel consumption (kg) GHG emission (kg) NPC (dollar)

Bi-level MOPSO MAECMS 5.16 × 105 2.11 × 106 7.70 × 106

Single-upper-level MOPSO Heuristic rule 5.55 × 106 2.22 × 106 8.36 × 106

Single-lower-level Result from the single-upper-level optimization MAECMS 5.17 × 105 2.14 × 106 8.05 × 106
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(62)

By using (62), the MAECMS has been developed for instantaneous
optimization depending on the system variables at the current time
based on Pontryagin’s minimum principle [33]. The flowchart is de-
picted in Fig. 3. Afterward, the values of the four energy management
parameters are sent back to the upper level.

A comparison among the proposed MAECMS, DP, and AECMS is
provided in Table A.1. These are implemented for the optimization of
the energy management strategy for the same HEPS whose sizes are
selected from the bi-level optimal solution set in Table 2. The results
show that the fuel consumption of MAECMS is only 2.44% more than
that of the DP; however, the computing time of MAECMES is one-187 of
the DP. In other words, the MAECMS is much more efficient with fuel
consumption. In addition, compared with the AECMS [35], the pro-
posed MAECMS decreases fuel consumption by 1.37% and reduces
computing time by 62.27%. The operating schedules of the diesel
generators under the three energy management strategies are illu-
strated in Fig. A1. Therefore, the MAECMS is the most suitable strategy
for complex bi-level optimization.

5. Results and discussion

In this section, the operating cycle of a tug ship is defined con-
sidering propulsive load, operational load, and hotel load. Next, the
Pareto solution set obtained by the proposed bi-level optimization is
illustrated and compared with single-upper-level and single-lower-level
optimizations. Thereafter, three optimal solutions are selected from the
Pareto solution sets according to the technique for order preference by
similarity to ideal solution (TOPSIS) [56,57], the simulation results of
the three optimal designs under the operating cycle are compared and
analyzed.

5.1. Operating cycle

In the absence of a standardized operation cycle for AHTS vessels, a
speed profile of a tug ship collected from real operation data is adopted
in this study [58] (Fig. 4). There are two modes of speed profile: sea
mode and maneuvering mode. In the sea mode, the AHTS vessel sails at
a speed of ~ 5.14 m/s to arrive at operation sites. In the maneuvering
mode, the vessel sails at a low speed and performs operations such as
lifting and pulling. Thus, the propulsive load can be calculated from the
speed profile. The auxiliary load (non-propulsive load), comprising
operational load and hotel load, cannot be ignored for the AHTS vessel.
Considering the power demand of cranes and capstans, the operational
load and hotel load are estimated in Fig. 4. Before each voyage, the
battery is charged to the upper limit at the shore power plant. The
duration of the profile plotted in Fig. 4 is 4800 s. The AHTS is supposed
to run 6 times a day and 200 days per year.

5.2. Pareto solution sets

The parameters used for optimization are given in Table A.2. The
ranges of the optimization variables are given in Table 2. The Pareto
solution set obtained from the proposed bi-level optimization is plotted
in a three-dimensional coordinate system representing annual fuel
consumption, annual GHG emission, and lifecycle NPC (Fig. 5). For
convenient observation, the Pareto front is projected as two-dimen-
sional coordinates as shown in Fig. 6.

In addition, two types of conventional single-level optimization are
carried out for comparisons. As listed in Table 1, the single-upper-level
optimization adopts the same MOPSO algorithm as the bi-level opti-
mization for component sizing at the upper level but uses a heuristic
rule-based energy management strategy for the lower level, which has
been widely applied in the field of hybrid electric propulsion design
[59,60]. On the other hand, the single-lower-level optimization adopts
the MAECMS, which is also adopted by the bi-level optimization,
however, based on a fixed set of component sizes. In this study, the
single-lower-level optimization inherits optimal solutions obtained
from the single-upper-level optimization. With regard to the single-level
optimization, the successive implementation of the single-upper-level
and single-lower-level optimizations is believed to yield the best result.

Table 2
Range of the optimization variables and optimal solutions.

Optimization variable Range Bi-level (Xb) Single-level (Xs_u, Xs_l)

Displacement of the diesel engine VD (10−3 m3) [57.00 97.00] 59.95 83.46
Diameter of the motor rotor dM (m) [0.31 0.85] 0.59 0.48
Length of the motor rotor lM (m) [0.25 0.95] 0.25 0.69
Gear ratio i [820] 19.48 15.48
Number of the battery module in series nESS [40200] 131 200

Fig. 4. Operating profile of the studied AHTS vessel, including speed profile,
operational load, and hotel load [58].

Fig. 5. Pareto solution sets.
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Three Pareto solution sets are illustrated in Fig. 5, representing the
optimal results from the bi-level (triangles), single-upper-level (circles),
and single-lower-level (squares) optimizations, respectively. Overall,
regarding the GHG emission and NPC, the triangles are closer to the
smaller part of the coordinate axis, the squares are relatively away from
the smaller part, and the circles are the farthest. The three sets are not
that distinguishable in terms of fuel consumption.

Projection regarding the two-dimensional coordinates shows the
detailed differences in Fig. 6. The three Pareto solution sets are also
represented by triangles, circles, and squares. In each two-dimensional
coordinate, the color, defined by the color scale, represents the value of
the solution on the third coordinate axis. The projection on the fuel
consumption–GHG emission plane in Fig. 6(a) states that the fuel
consumption of the bi-level optimization is roughly the same as that of
the single-lower-level optimization and is obviously less than that of the
single-upper-level optimization. The same conclusion is drawn from
Fig. 6(b).

The average statistics of the three Pareto solution sets are provided
in Table 1. The average fuel consumption of the bi-level optimization is
0.2% less than that of the single-lower-level optimization and 7.03%
less than that of the single-upper-level optimization; the average GHG
emission of the bi-level optimization is 1.40% less than that of the
single-lower-level optimization and 3.60% less than that of the single-
upper-level optimization; the average NPC of the bi-level optimization
is 4.35% less than that of the single-lower-level optimization and 7.89%
less than that of the single-upper-level optimization. Overall, the best
results are obtained by the bi-level optimization, followed by the single-
lower-level and single-upper-level optimizations. The optimal match of
the component sizing and energy management contributes to the high
performance of the bi-level optimization. The insights are given in the
next section.

As previously described, the single-lower-level optimization inherits
optimal component sizes obtained from the single-upper-level optimi-
zation. Hence, the energy management policy, i.e., MAECMS, con-
tributes to the improvement of the single-lower-level optimization

Fig. 6. Projection of Pareto front on two-dimensional planes (circles: solutions selected by the TOPSIS).

Fig. 7. Schematic diagram of the HIL experimental platform.

Fig. 8. Photo of the HIL experimental platform.
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rather than the single-upper-level optimization. The MAECMS considers
fuel consumption by the engines and electricity consumption from the
batteries. The fuel consumed at the engine startup is included in the
total fule consumption. However, according to the heuristic method
adopted by the single-upper-level optimization, the engines operated at
their rated power. Usually, the rated power is not exactly equal to the
required load power. The gap is filled by charging and discharging of

the batteries. When the batteries are charged to their SOC upper limit,
the engines have to be stopped. On the other hand, when the batteries
are discharged to their SOC lower limit, the engines have to be re-
started. Frequent restarts lead to more fuel consumption. The MAECMS
has solved this issue by appropriately reducing the engine power and
the number of times the engine restarts. The results validate the sig-
nificance of the advance energy management and also the correctness

Fig. 9. Composition of evaluation indicators of the three selected solutions.

Fig. 10. Operating schedule of the diesel generators of the three selected solutions.

Fig. 11. Comparison of the battery power of the three selected solutions.

Fig. 12. Comparison of the SFOC of the diesel generators of the three selected solutions.
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of the programs developed for this study.

5.2.1. Selection of optimal solutions from the Pareto sets
Based on the above results, for better understanding, an optimal

solution is selected from each Pareto solution set based on the TOPSIS,
which is a robust criterion of decision-making for multiple objective
problems [56,57]. In the TOPSIS, two virtual points, ideal point and
nadir point, are defined. The ideal point reaches the minimum in terms
of each of the three performance indexes in the Pareto solution set. On
the contrary, the nadir point reaches the maximum. Non-dimensiona-
lization is processed to define the possibility of different dimensions of
objectives as given below [56]:

=
=

s
F

F( )
ij

ij

i
o

ij1
2 (63)

where F is the objective matrix of each point in the Pareto solution set,
the subscript i is the number of each point, j is the index for each ob-
jective, and o is the total number of the objectives, which equals to
three in this study.

The TOPSIS defines the distance +Di from a random point in the
Pareto solution set to the ideal point, and the distance Di from a
random point to the nadir point.
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o
ij j
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2
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where sj
ideal is the ith non-dimensional objective of the ideal point

calculated by (63); similarly, sj
nadir is the non-dimensional objective of

the nadir point.
The larger the value of the variable Ri (defined below), the closer it

would be to the ideal point and farther to the nadir point. Therefore, the
TOPSIS selects the optimal solution by finding out the maximum Ri
[57].

=
+ +

R D
D Di

i

i i (66)

The optimal solution selected from the Pareto set regarding the bi-
level optimization is represented by Xb, which is denoted by a black
circle in Fig. 6. Its component sizes are provided in

Table 2. Similarly, the optimal solutions selected from the single-
upper-level and single-lower-level optimizations are represented by
Xs\_u and Xs\_l, which are also denoted by black circles in Fig. 6. Their
component sizes are the same, which are provided in Table 2.

5.3. Results under the operating cycle

5.3.1. HIL experiment
To evaluate the performance of the three solutions, HIL experiments

are conducted under the operating cycle. The performance evaluation
indicators and their compositions are compared with the data collected
from the experiments.

The development steps of the HIL experimental platform are as
follows: First, the HEPS model and the energy management model built
in the MATLAB/Simulink environment are transformed into C code.
Second, the C code is downloaded into the dSPACE PX10 platform using
dSPACE Control Desk (denoted by M) through the Ethernet. Third,
dSPACE Control Desk (denoted by E) downloads the C code of the en-
ergy management strategy into dSPACE MicroAutobox. As shown in
Fig. 7, dSPACE MicroAutobox is supported by a direct current (DC)
power supply, while other objectives of the HIL experimental platform
are supported by an alternating current (AC) power supply. The
dSPACE MicroAutobox platform sends the energy management para-
meters tx ( )E and synchronizing signals to the dSPACE PX10 platform
through I/O connection. At the same time, the dSPACE PX10 platform
fed the status information of the HEPS back to the dSPACE Micro-
Autobox platform. Fig. 8 shows the HIL experimental platform.

5.3.2. Performance comparison of the selected solutions
As seen in Table 2, both the component sizes of the bi-level and

single-level optimal solutions are within the range of the optimization
variables. The most obvious difference between them lies in the size of
the engines and number of batteries. The bi-level optimization yields the
solution, which benefits from the synchronous optimization of the energy
management strategy, with smaller engines and fewer battery modules.
The performance indexes and their compositions are compared in Fig. 9.

The fuel consumption has two parts. The first part is consumed by
the diesel engines to generate electricity. The second part is used to
start up the engines. As shown in Fig. 9(a), regarding the first part, Xb
consumes up to 4.96 × 105 kg, compared to Xs\_u (4.85 × 105 kg) and
Xs\_l (4.79 × 105 kg). However, regarding the second part, Xb con-
sumes as little as 8.36 × 103 kg, compared to Xs\_u (3.68 × 104 kg) and
Xs\_l (1.26 × 104 kg). Overall, Xs\_l has the minimum fuel consumption
(4.92 × 105 kg), followed by Xb (5.04 × 105 kg) and Xs\_u (5.22 × 105

kg). Xs\_l has surpassed Xb because Xs\_l can utilize more electricity
from the shore power because of its large battery capacity. The dis-
advantages of large battery capacity are increasing GHG mission and
high cost, which are explained in the following paragraphs.

The GHG emission is caused by two energy sources. One source is
fuel engines. High fuel consumption leads to more GHG emissions.
Therefore, as shown in Fig. 9(b), the bottom part of Xs\_u is more than
that of the other two, which is corresponding to the trend of fuel con-
sumption. The other emission source is the electricity supplied by the
shore power plant. Xb uses less electricity than the two single-level
optimal solutions, Xs\_u and Xs\_l. Therefore, Xb emits less GHG
(2.21 × 105 kg) from electricity; by contrast, Xs\_u emits 3.06 × 105 kg,
and Xs\_l emits 3.28 × 105 kg. By summing up the amount of emissions

Fig. 13. Comparison of the SOC trajectory of the three selected solutions.

Fig. 14. Comparison of the annual operational cost of the three selected solu-
tions.
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from the two sources, Xb emits the minimum (2.09 × 106 kg), followed
by Xs\_l (2.15 × 106 kg) and Xs\_u (2.24 × 106 kg).

The lifecycle NPC can be classified into three parts. The first part
involves the initial investment except the battery modules. Xb uses
small engines; so, it costs less; on the contrary, Xs\_u and Xs\_l use large
engines; so, they cost more. The second part is the operational cost,
which is related to the consumption of fuel and shore electricity. The
operational costs of Xb, Xs\_u and Xs\_l are $5.55 × 106, $5.91 × 106

and $5.62 × 106 respectively. The third part is the cost of battery in-
stallation and replacement. Xb uses fewer battery modules, which cost
$3.1 × 105; on the contrary, Xs\_u and Xs\_l use more battery modules
which cost $5.66 × 105. To sum up, Xb costs the least as $7.40 × 106,
followed by Xs\_l 8.30 × 106 kg and Xs\_u 8.60 × 106 kg.

Overall, compared with the conventional single-upper-level optimiza-
tion, the solution Xb of the bi-level optimization achieves 3.37% less fuel
consumption, 6.70% less GHG emission, and 13.95% less NPC. When
compared with the solution of the single-lower-level optimization, which is
believed to be the best solution, Xb consumes 2.44% more fuel but 2.79%
less GHG emission and 10.84% less NPC. The comparison of these results
shows that Xb has significant advantages regarding GHG emission and NPC
because of small engines and few batteries. The variable variations under
the operating cycle are illustrated and analyzed in the next section.

5.3.3. Variable variations under the operating cycle
The comparisons of the simulation results of the three optimal so-

lutions under every operating cycle (4800 s) are illustrated in
Figs. 10–13. Besides, the compositions of the annual operational cost
are shown in Fig. 14. Because of different component sizes and energy
management strategies, the results differ in terms of engine working
time, number of times the engine restarts, specific fuel oil consumption
(SFOC) of the diesel engines, battery power, and battery SOC, which
cause the performance to be different among the three solutions. The
comparison between Xb and Xs\_u is narrated below, and then the
comparison between Xb and Xs\_l is stated.

As described, Xb uses small engines and few battery modules co-
ordinated by the MAECMS, considering the fuel consumption of the
engines and equivalent fuel consumption of the electricity as given in.
Moreover, the fuel consumption of during normal course and startup is
included. As a result, Xs\_u uses big engines and more battery modules
coordinated by heuristic rules that, in principle, allow the engines to
output the rated power. The two diesel generators of the studied HEPS
are represented by DG1 and DG2. Most of the time, the output of the
diesel generator power of Xb is slightly less than the demanded power as
shown in Fig. 10(a), and its battery gets gradually discharged to fill the
power gap as shown in Fig. 11(a). Benefiting from the MAECMS, the
number of engine startup times is as few as 6 (3 for DG1 and 3 for DG2).
On the contrary, the DG output power of Xs\_u, which equals to the rated
power of the big engines, is more than the demanded power. Then, the
extra power is utilized to charge the battery. Considering the time (tDG)
required to start or shut down the DGs, once the battery current reaches
60.00% of the charging limit Ibat_ min, the battery should be discharged,
and the engines have to be shut down. The engines are restarted when
the battery discharging current reaches 60.00% of the discharging limit
Ibat_ maxor SOC reaches the lower bound SOCb low_ . The number of engine
startup times increases to 19 (18 for DG1 and 1 for DG2). Therefore, the
fuel consumption of Xb is much less than that of Xs\_u, as shown in
Fig. 9(a). On the other hand, the SFOC of Xb(Fig. 12(b)) is basically
larger than that of Xs\_u (maintained to be 196.20 g/kWh), which means
the engine efficiency of Xb during operation is higher than that of Xs\_u.
The cumulative working time of the two engines of Xb is 5100.00 s,
which is more than that of Xs\_u (3000.00 s). Therefore, the fuel con-
sumption of the normal running of Xb is more than that of Xs\_u, which
explains the data in Fig. 9(a). Nevertheless, according to Fig. 9(a), the
total fuel consumption of Xb is less than that of Xs\_u. In short, Xb reduces
fuel consumption by reducing the number of engine startup times, taking
advantage of its energy management strategy.

Regarding the GHG emission, electricity from the shore power plant
is ignorable as modelled in. The number of battery modules listed in
Table 2 shows that the battery capacity of Xb is much less than that of
Xs\_u. Accordingly, the battery power during operation of Xb is much
less than that of Xs\_u, as shown in Fig. 11. As the battery is charged to
the upper bound SOCb up_ before the start of each voyage and is dis-
charged to the lower limit SOCb low_ at the end of each voyage, as shown
in Fig. 13, the amount of electricity consumed by Xb is much less than
that by Xs\_u, so is the GHG emission from the shore power plant. In
addition, because of the less fuel usage of Xb, less GHG is emitted by Xb.
Therefore, the overall GHG emission of Xb is less than that of Xs\_u,
which explains the results in Fig. 9 (b). For the same reason that Xb
consumes less fuel and electricity, the operational cost of Xb, which
includes the costs of fuel and electricity from the shore power plant, is
less than that of Xs\_u, as shown in Fig. 14.

As to Xb and Xs\_l, they are using the same energy management
strategy, i.e., MAECMS, but their component sizes are much different.
As mentioned, Xb has small engines and few battery modules, which is
in contrast to Xs\_l. As shown in Fig. 10(a) and (c), most often, the DG
output power of both Xb and Xs\_l is slightly less than the demanded
power. Their engines are not always working in high efficiency area
because the engine SFOC is not always low as seen in Fig. 12(a) and (c).
However, benefiting from the large battery capacity, a large quantity of
electricity can be utilized; so, the minimum working time of Xs\_l is
3900 s, and the minimum number of startup times is 4. Thus, the fuel
consumption is a bit less than that of Xb.

Large battery capacity allows for long duration of battery dischar-
ging to propel a ship. For example, from 1680 s to 2520 s, the pure
electricity propulsion mode of Xs\_l lasts 840 s at the discharging power
of ~ 900 kW. However, the longest duration of pure electricity pro-
pulsion mode of Xb is 120 s (from 1680 s to 1800 s), at the average
discharging power of 650 kW. Nevertheless, the high consumption of
electricity emits more GHG, which cannot be ignored especially when
the electricity is produced by coal in China and India [61]. The total
GHG emission of Xs\_l is more than that of Xb in spite of less fuel
consumption of Xs\_l. Moreover, for the same reason that more elec-
tricity is consumed by Xs\_l, the total operational cost of Xs\_l is more
than that of Xb. In a word, confined by the component sizes that are
determined by the single-upper-level optimization, Xs\_l is inferior to Xb
in terms of GHG emission and cost.

To sum up, the bi-level optimization is significantly superior to the
two single-level optimizations. Specifically, the optimal solution of the
single-lower-level optimization is closer in terms of performance to that
of the bi-level optimization than that of the conventional single-upper-
level optimization.

6. Conclusion

This paper proposes a multiobjective bi-level optimization, which
consists of MOPSO for component sizing at the upper level and MAECMS
for energy management at the lower level. The optimization considers
the following three objectives: fuel consumption, GHG emission, and
lifecycle cost. The optimal solution is selected from the Pareto set.
Performance experiments are carried out on a real-time HIL platform.
The results indicate that the bi-level optimization finds optimal solution
resulting in 3.37% less fuel consumption, 6.70% less GHG emission, and
13.95% less NPC compared to the conventional single-upper-level opti-
mization. Furthermore, when compared with the single-lower-level op-
timization, which is believed to obtain the best solution in the single-
level area because it inherits the component sizes from the single-upper-
level optimization and adopts the AECMS for energy management, the
bi-level optimization exhibits advantages by emitting 2.79% less GHG
and incurring 10.84% less NPC at the expense of 2.44% more fuel con-
sumption compared to the single-level optimization. With respect to
environmental protection and cost reduction, the bi-level optimization is
of importance for the design of HEPSs especially in areas under strict
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environmental control and for cost-sensitive ship owners. The proposed
bi-level optimization method can be applied to various HEPSs, such as
offshore vessels, research, and exploration vessels.
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